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Abstract. This article considers the methodology of hydraulic calculation of ring gas 

distribution systems on the example of a network with one supply and one withdrawal node. In the 

course of the analysis the advantages of the ring structure over the beam structure are revealed, the 

regularities of pressure and gas flow distribution are substantiated, and the methods of calculation of 

looped sections of main gas pipelines are considered. Particular attention is paid to the situation 

where the ring network includes a single feeder node and a limited number of withdrawal nodes. The 

analysis concludes with a discussion of a computational experiment. 
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For hydraulic calculation of the static state of a separate section of the gas pipeline network, if the 

difference in level height of the gas pipeline axis is not significant (<200 м ), a system of quasi-one-

dimensional equations of conservation of momentum and mass of gas, as well as the equation of state 

of real gas is used [1]: 

{
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= 0

𝜌𝑤𝐹 = 𝑐𝑜𝑛𝑠𝑡
𝑃 = 𝑍𝜌𝑅𝑇

    (1) 

The first equation of this system expresses the law of conservation of gas momentum, according to 

which the pressure drop along the flow direction is due to overcoming the frictional resistance force. 

The second equation expresses the law of conservation of mass of transported gas: the mass flow rate 

of gasМ  (kg/hour) remains constant along the length of a separately taken elementary section of the 

network. In the paper, to facilitate the application of the resulting formulas in practice, the 

commercial flow rateQ  (nm3/hour) is used - the volumetric flow rate of gas reduced to normal 

condition. The third equation is the equation of the state of real gas taking into account the coefficient

Z  of its supercompressibility.  

The pressure P  , density   and velocity w  of the gas are taken as average integral values of the 

pipeline cross-section and vary along the length of the section. Diameter D  , cross-sectional area

4

2D
S


=  , and resistance coefficient  take fixed values for an individual linear section of the 

network. The temperatureТ  , gas constant R  and supercompressibility coefficient Z  of the 
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transported gas are assumed to be constant throughout the entire pipeline network. Moreover, if the 

static gas pressure is less than 1.2 MPa (e.g. in a gas distribution network), the value of the 

coefficient Z  is assumed to be 1. For larger pressure values, the value of Z  can be found from the 

solution of the Redlich-Kwong equation for the average pressure value on the section or in the 

network [2].  

System (1) has a solution of the form  

222 blQPP
HK
−= ,     (2) 

where
КН

РР ,  - pressure values at the beginning and end of the section according to the flow 

direction; l  - length of the section. Constant  
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ZRTD
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ct

ct ==
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
     (3) 

in formula 2 takes into account the hydraulic parameters of the gas pipeline (diameter and resistance 

coefficient) and thermodynamic parameters of the transported gas (standard temperature, pressures 

and gas temperature) [3]. 

When analyzing the advantages of a ring network, we will 

limit ourselves to the consideration of the simplest looped 

network with the same diameter D  and resistance coefficient

  , when the ring has one gas inlet and outlet point each.  

Suppose that gas delivery to the consumer is made along the 

arcs of the ring with lengths
1
l  and 2l  , with

21
ll   (Fig. 1). 

On the basis of Kirchhoff's first law at the points of gas 

extraction and gas supply: 
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Here
1

Q  and 2Q  are volumetric (commercial) gas flow rates 

along the first and second arcs of the ring, reduced to normal 

conditions. If the condition Qq
~

=  is fulfilled, the solution of 

the problem does not depend on time, because gas does not accumulate and does not decrease in the 

network with the lapse of time. 

Let's make formulas for calculating the pressure at the outlet point, assuming equal supply pressure :
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In these equations it was assumed that at the point of branching the value of gas pressure is greater 

than at the point of merging of flows (withdrawal):
)1(

~
q

PP   and
)2(

~
q

PP   . Moreover, according to 

the analog of Kirchhoff's second law, in the communicating sections of the arcs the pressure has no 

break, i.e. in the end nodes of both arcs the pressure has the same value
)2()1( qqq

PPP ==  . In this 

connection from the last system we obtain 
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 Fig. 1. Schematic diagram of a 

ring network with gas withdrawal 

and supply 
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Since
12

~
QQQ −=  , the quadratic equation with respect to 1Q  follows from this equality: 

0
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At hydraulic symmetry ( )
21

ll =  the equation transforms into a linear equation, the only solution of 

which is 

2
~

21
QQQ == . 

This is a special case of two parallel filaments, when the filaments have the same hydraulic indices. 

Since the lengths of the filaments are the same, the uniqueness of the solution is not in doubt. 

Let us determine the area costs of
1

Q  and 2Q  , when the arcs have different lengths (at ).
21

ll   

Let's calculate the discriminant of the quadratic equation  
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and determine the positive solution of the quadratic equation, which is the gas flow rate along the 

first arc of the ring  
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The corresponding gas flow rate on the second arc is 

Q
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l
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According to these relationships, a larger volume of gas ( )
21

QQ   is transported along the short arc 

and the pressure drop will be more intense (Fig. 2).  

Suppose that the pressure values P
~

 and qP  are set at 

the gas inlet and outlet points. Let us estimate the 

throughput (capacity) of the ring and its individual 

arc when the other arc is not functioning. 

 The capacities of individual arcs in a ring 

structure are as follows 
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Then the total capacity of the ring is 
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Similarly, we obtain the throughput values for the case of functioning of the first arc only (failure of 

the second arc) 
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Figure 2. Pressure variation along the arc 

length of the annular gas pipeline 

according to the quadratic law of 

resistance 
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and only the second arc (failure of the first arc) 
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By honorable division of expenses we obtain 

( ) (1) (2) 1 2 2 1: : ( ) : :kQ Q Q l l l l= + . 

The comparison shows that for fixed values of P
~

 and qP  the performance advantage of the ring 

network is obvious. At
21

ll =  a case of hydraulic symmetry is formed. 

Let us estimate the energy loss on transportation of a fixed gas flow rate through the ring and its 

individual arcs. In this case, the measure of energy loss is the statistical pressure drop.  

According to the obtained formulas for the ring network 
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Accordingly, for its separately functioning arcs 
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A comparison of the pressure values at the ends of individual arcs shows that a larger arc length 

results in a greater pressure loss. I.e. under the condition
21

ll   the inequality
)2(2)1(2

PP   takes place. 

Under these assumptions, we compare the final pressure value in the ring )(2 kP  with )1(2P  , i.e. with 

the arc of lower pressure loss. The ratio of the pressure drop squared of these equalities is 
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 This fraction has a value that is less than one because of the positivity of the expression in the 

last bracket. Then the subtraction in
2

)(2 k
P  will be less than the subtraction in

2

)1(2
P  . Hence the 

inequalities 

2

)(2 k
P >

)1(2)1(2
PP  , 

which is equivalent to writing 

)(2 kP >
)1(2

P > )2(2P . 

It follows that by using a ring gas supply structure, the loss of statistical pressure is reduced and 

consequently the operating costs are reduced.  

We compare the accumulation abilities of the ring and its separately functioning arcs.  

The mass accumulated in the gas pipeline section with length l  and cross-sectional area F  is 

determined by the formula  

=


l

dxxFM
0

)( . 
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It can be represented through the density of the gas in the standard condition
st

  :  


= VM

st
 , 

where

срср

ср

Ф
TPZ

ТP
VV

st

st
=


 - gas volume reduced to standard condition with ;,

stst
PТ FlV =

Ф
 - 

physical volume of the gas pipeline section;
cpcp

TPZ ,,
ср

 - average values of gas 

supercompressibility coefficient, static pressure and gas temperature for the considered gas pipeline.  

Accordingly, the mass of accumulated gas in the pipeline section is determined by the product
ср

РV
Ф

 

, since the other parameters in the formula are constant.  

For the independently functioning first arc we have  
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and for the longer one, the second one  
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These formulas clearly demonstrate the relationships .
12 

 MM  

We now compare the values of
ср

РV
Ф

 for the ring and the separately functioning 2nd arc.  

By virtue of
221

lll +  and, since the cross-sectional areas of the compared gas pipelines are the 

same, we have . ( ) ( )
2ФФ

VV
К
  

The average value of the site pressure, under the quadratic law of resistance, is defined through the 

inlet ( P  ) and outlet ( qP  ) pressures in the form [3] 
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To compare ( )cp K
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2cpP  , let's make up the difference : ( ) ( )
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Since the expressions in each of the brackets have positive values (the condition  

proved above), we obtain  

. 

On the basis of the theorem on inequalities with positive terms from inequalities  
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and  we obtain 

.  

Hence, taking into account  , the final estimate for accumulating abilities follows 

.  

Thus, it was proved that the ring structure is also expedient from the point of view of the 

accumulation capacity of the network, which to a certain extent contributes to the smoothing of 

irregularities in gas consumption at high operating pressures in the network.  

In the course of proving the advantages of the looped network in relation to the beam structure, we 

have obtained the formulas that are necessary to carry out hydraulic calculations in normal and 

emergency situations.  

For completeness, we present formulas that take into account the different hydraulic indices of the 

arcs  

, .  

If the lower limit of the permissible value  of the pressure in the extraction unit is set, the value of 

the supply pressure is restricted from below to ensure a normal situation .  

Based on the obtained formulas, let us compare the main characteristics of the ring and beam 

networks: 

Parameter Ring network Radial network 

Performance Higher due to alternative gas delivery routes Limited to one direction of flow 

Pressure losses 
Below because of the possibility of 

redistributing the flow 
Higher with increasing distance 

Network 

flexibility 
High, load shifting possible 

Low, failure of one branch is 

critical 

Stability of 

operation 

Resistant to temporal irregularities in 

consumption 

Possible sudden spikes in blood 

pressure 

Gas 

accumulation 

Large, which helps to smooth out flow 

variations 

Smaller, does not compensate for 

peak loads 

 

Thus, a ring network has advantages in terms of reliability, uniformity of pressure distribution and 

reduced operating costs. 

The following conclusions can be drawn on the basis of the calculations performed: 

1. The ring network outperforms the beam network in terms of performance, flexibility and 

resilience to abnormal situations. 

2. Reduced pressure losses in the ring structure lead to reduced energy consumption. 

3. The large storage capacity allows for smoothing out consumption peaks. 

Thus, the use of a ring gas supply scheme is more rational in terms of operation and economic 

efficiency. 
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