

Arm Rehabilitation Assistive Device using a Sensory Unit and Arduino

Ali Ahmed Sabah, Sajjad Abdul-Jabbar Naho

*University of Technology, Biomedical Engineering Department, Biomedical Instrumentation Branch,
B.Sc. Project*

Abstract. Rehabilitation of upper limbs is a critical process for individuals recovering from conditions that impair motor functions, such as strokes or injuries. The goal is to restore as much function as possible to the affected limbs, enabling patients to regain independence in their daily activities. This involves a combination of physical therapy, occupational therapy, and sometimes the use of assistive devices or technologies like robotics and virtual reality. Effective rehabilitation is characterized by personalized treatment plans that are developed based on the specific needs and progress of each patient. The success of these programs is often measured by improvements in muscle strength, coordination, range of motion, and the performance of daily tasks. By integrating electromyography (EMG), flex sensors, and accelerometers within an Arduino-based platform, the project embodies a fusion of traditional rehabilitative principles with cutting-edge sensor technology. Methodologically, the project involves the development of customized sensor circuits, data acquisition protocols, and signal processing algorithms to capture intricate physiological nuances related to muscle activity, joint angles, and movement dynamics. Through experimental trials and case studies involving individuals with upper limb impairments, the efficacy and feasibility of the proposed framework are meticulously evaluated. This interdisciplinary endeavor not only contributes to the ongoing evolution of rehabilitation engineering but also underscores the importance of personalized interventions in optimizing patient outcomes and enhancing quality of life.

Chapter One: Introduction

1.1 Introduction

In recent years, the field of rehabilitation engineering has witnessed significant advancements in leveraging technology to improve outcomes for individuals with upper limb impairments. Among the myriad of technological solutions, Arduino-based systems have emerged as a versatile and cost-effective platform for developing customized rehabilitation interventions. This graduation project titled "Rehabilitation of Arm using Arduino" aims to explore the efficacy of Arduino-based approaches in facilitating upper limb rehabilitation.

Upper limb impairments, whether resulting from stroke, spinal cord injury, or other neurological conditions, can profoundly impact an individual's quality of life and functional independence. Effective rehabilitation interventions play a crucial role in restoring motor function, enhancing mobility, and promoting overall well-being for these individuals. However, traditional rehabilitation methods often face challenges in personalization, accessibility, and affordability.

Arduino, an open-source electronics platform, offers a promising solution to address these challenges. With its user-friendly interface, affordability, and flexibility, Arduino enables the development of tailored rehabilitation solutions that can be adapted to individual needs and preferences. From virtual arm illusions to proprioceptive neuromuscular facilitation (PNF)-based

therapies, Arduino-based systems have demonstrated promising results in improving motor function, enhancing motor control, and facilitating neuroplasticity.

This graduation project seeks to build upon the existing body of knowledge in upper limb rehabilitation by designing and implementing novel Arduino-based rehabilitation interventions. By integrating Arduino with innovative technologies such as virtual reality, electromyography (EMG), and motor imagery (MI), this project aims to explore new avenues for enhancing the effectiveness and accessibility of upper limb rehabilitation.

Through a combination of literature review, prototype development, and experimental evaluation, this project endeavors to contribute to the growing field of rehabilitation engineering. By investigating the feasibility, efficacy, and usability of Arduino-based rehabilitation interventions, this project aims to provide insights and recommendations for future research and clinical practice in upper limb rehabilitation.

1.2 Objectives

1. Design and Develop Arduino-Based Rehabilitation Prototypes:
 - Design and implement Arduino-based rehabilitation prototypes tailored to address specific upper limb impairments, such as stroke, spinal cord injury, or neurological disorders.
 - Develop user-friendly interfaces and interactive features to facilitate engagement and adherence to rehabilitation exercises.
2. Evaluate Efficacy and Usability of Arduino-Based Interventions:
 - Conduct experimental evaluations to assess the efficacy of Arduino-based interventions in improving motor function, enhancing motor control, and promoting neuroplasticity in individuals with upper limb impairments.
 - Evaluate the usability and user experience of the developed prototypes through user feedback, usability testing, and qualitative assessments.
3. Provide Insights and Recommendations for Future Research and Clinical Practice:
 - Analyze the findings from experimental evaluations and user feedback to identify strengths, limitations, and areas for improvement in Arduino-based rehabilitation interventions.
 - Provide recommendations for optimizing the design, implementation, and deployment of Arduino-based rehabilitation solutions in clinical settings.

1.3 Motivation

1. Addressing Unmet Needs: There's a growing demand for innovative and accessible solutions in upper limb rehabilitation, as traditional methods often fall short in personalization and effectiveness.
2. Harnessing Arduino's Potential: Arduino offers a versatile and affordable platform for developing rehabilitation interventions, making it ideal for exploring new approaches to upper limb rehabilitation.
3. Advancing Research and Innovation: The project aims to contribute to the field of rehabilitation engineering by exploring novel technologies and approaches, generating valuable insights for future research and practice.
4. Making a Meaningful Impact: Ultimately, the goal is to positively impact the lives of individuals with upper limb impairments by empowering them to regain independence and improve their quality of life through effective rehabilitation interventions.

1.4 Project Outlines

1.4.1 Chapter One

This chapter introduces the main subjects of the project, the objectives and the motivation for the project.

1.4.2 Chapter Two

This chapter presents the theoretical background and literature review of the project. The chapter also provides a Background on EMG sensor, including the Muscle Dysfunction.

1.4.3 Chapter Three

This chapter encompasses the practical implementation of the project, delineating the assembly process of device components, elucidating their operational mechanisms, and detailing the execution of experiments to derive tangible results.

1.4.4 Chapter Four

This chapter encapsulates the culmination of the entire project, offering a comprehensive conclusion, and delineating recommendations for future enhancements and developments to further augment the project's efficacy and scope.

Chapter Two: Background and Literature review

2.1 Background

In the realm of Anatomy and Physiology, it is understood that both nerves and muscles function via electrical processes. Nerves serve as conduits for electrical impulses, transmitting sensory information from peripheral regions to the brain, where such signals are interpreted as sensory perceptions such as heat, pressure, or pain. Moreover, these nerves facilitate the transmission of electrical impulses from the brain to various muscles, enabling actions such as lifting an arm or opening a hand. Drawing upon principles from electronics, it becomes evident that where electrical impulses occur, they can be quantified and documented. Thus emerges the concept of electromyography, a diagnostic modality wherein specialized medical practitioners (such as physicians specializing in Physical Medicine, psychiatrists, physical therapists, chiropractors, among others) employ small needle electrodes inserted into both motor and sensory nerves, as well as muscle tissue, to assess and record its electrical activity, or alternatively, to be placed on the surface of the skin for similar purposes. The instrumentation employed for measuring and recording such electrical activity is denoted as an Electromyography (EMG) device, which furnishes outcomes both in visual format on a display akin to an oscilloscope and audibly through an integrated speaker system.[1]

The utility of EMG extends beyond mere visualization, as it enables comparisons of individual measurements against established population norms. This comparative analysis aids in clinical decision-making, facilitating, for instance, the evaluation of the severity of spinal cord injuries in trauma patients. However, the diagnostic scope of EMG extends beyond this purview. By applying direct electrical stimulation to muscle groups, EMG can delineate the locus of pathophysiological abnormalities, distinguishing between aberrations in nerve-muscle connectivity and intrinsic muscle dysfunction. [2]

Under normal physiological conditions, resting muscle tissue exhibits negligible electrical activity. Conversely, during muscle contraction, electrical activity within the muscle increases. In pathological states, deviations from these norms manifest, either in terms of amplitude or conduction velocity along the nerve fibers. For instance, in cases where a neurological examination elicits indications of muscular weakness, subsequent EMG assessment may reveal normal impulse magnitude and conduction velocity despite underlying muscle pathology, as observed in muscular dystrophies. Conversely, compromised motor nerves due to disease or injury typically exhibit attenuated impulse amplitude or reduced conduction velocity. When extended to sensory nerves, nerve conduction

studies conducted via EMG serve to corroborate or dismiss diagnoses of specific disorders such as Myasthenia Gravis, Guillain-Barré Syndrome, or organophosphate poisoning.[3]

2.2 Electromyography (EMG) Sensor

An electromyography (EMG) sensor is a device designed to capture and analyze muscle movement or muscle activity. This technology operates on the principle that when muscles contract, they emit an electrical impulse that propagates through adjacent bone and tissue. EMG sensors play a crucial role in diagnosing and excluding various muscle disorders, such as muscular dystrophy or polymyositis. Furthermore, they aid in assessing nerve dysfunction, muscle fatigue, nerve-to-muscle signal transmission issues, and real-time muscle dysfunctionality.[4]

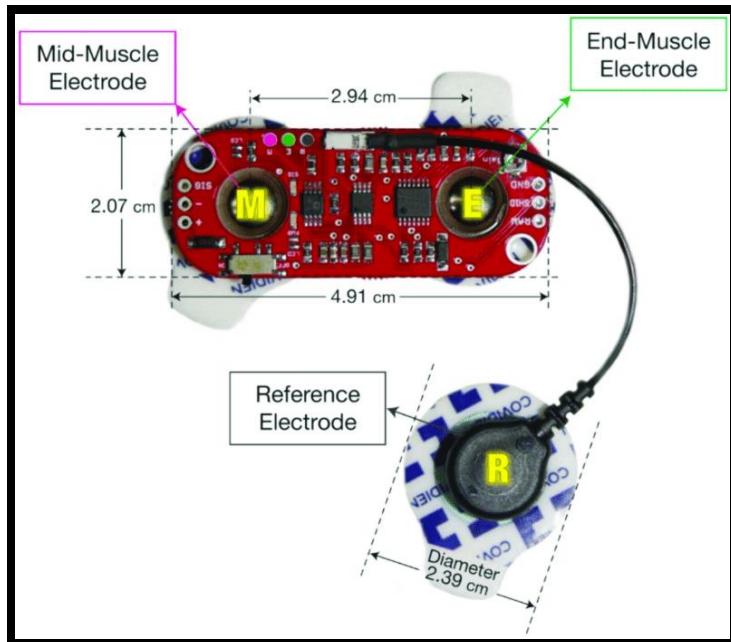


Figure 2-1: EMG Sensor.[4]

2.2.1 Key Features of EMG Sensor

- Compact Form Factor
- Specifically Engineered for Integration with Microcontrollers
- Adjustable Gain Functionality facilitated by an onboard potentiometer
- 5mm Connector Interface.[3]

2.2.2 Applications of EMG Sensor

- Evaluation of Motor Control Disorders and Kinesiology
- Utilization of Myoelectric Signals for controlling prosthetic devices targeting hands, lower limbs, and arms
- Diagnosis of muscle and nerve disorders in patients to facilitate early intervention and treatment
- Integration into gaming systems
- Implementation within robotic control mechanisms.[3]

2.2.3 Types of EMG Sensors:

There are two primary types of EMG sensors available for diverse applications: surface EMG sensors and intramuscular EMG sensors. Although they differ in sensor placement, both types share common procedural elements.[3]

1. Surface EMG Sensor (or EMG Signal Sensor):

- Essential to the surface EMG sensor process is precise sensor positioning on the muscle or limb.
- Optimal placement within the innervation zone of relevant tendons enhances detection accuracy.
- The electrodes capture muscle or limb activation as movements and contractions occur.
- Detected muscle electrical activity is visually represented as waveforms on a monitor (often referred to as an oscilloscope).
- Signal strength correlates with the intensity of muscle activity.
- Signal recording efficacy is enhanced in individuals with more compliant skin and lower body fat.
- Critical to this process is the mitigation of baseline signal fluctuations during recording to prevent degradation of signal quality.[5]

2. Intramuscular EMG Sensor:

- The procedure entails the insertion of a sterile needle into the targeted muscle.
- Similar to surface EMG sensors, electrodes detect muscle activation during contractions.
- Integration of an audio amplifier facilitates enhanced evaluation through both visual and auditory feedback.
- The monitor measures and displays the electrical activity of the engaged muscles following detection.[5]

2.2.4 Principles of Work

The functionality of an electromyography (EMG) sensor hinges on the placement of electrodes or sensors in proximity to targeted muscle groups. These sensors demonstrate optimal efficacy when positioned over superficial muscles, as they are incapable of bypassing the action potentials generated within superficial muscle tissue.

Upon activation, the EMG sensor initiates signal processing, during which the power is activated, and its duration undergoes diminution. Moreover, dynamic interactions occur among the muscle, skin, and electrodes, necessitating careful consideration during signal acquisition.

Fundamentally, EMG signals emanate from the electrical activity or electric potential generated by active muscle fibers during contraction. [3]

2.2.5 Characteristics of EMG Signal

- Amplitude Range: Typically spans from 0 to 10 mV (+5 to -5) before undergoing amplification.
- EMG Frequency: Exhibits a frequency range between 10 and 500 Hz.
- Dominant Energy: Predominantly concentrated within the frequency band of 50 to 150 Hz.
- Peak Frequency: Typically manifests in the vicinity of 80 to 100 Hz.[6]

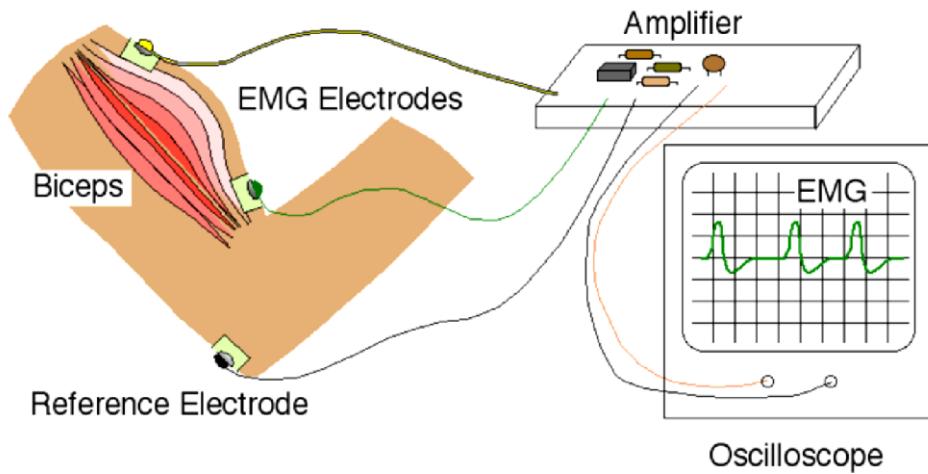


Figure 2-2: EMG Signal.[7]

2.2.6 Experimental Setup

Phase 1: Skin Preparation and Electrode Placement

Following skin preparation, electrode placement ensues as a crucial step. Skin preparation involves shaving the subject's skin using a small electrical shaver and subsequently cleansing it with sterile alcohol swabs saturated with 70% Isopropyl Alcohol. This meticulous process aims to minimize noise interference and ensure optimal electrode-skin contact. It is imperative to eliminate any traces of body oil, salt, hair, and dead cells from the skin surface. Skin preparation is accomplished by thoroughly wiping the alcohol swab across the targeted skin area where electrode placement is intended.

Electrodes are strategically positioned at the muscle belly, avoiding placement over tendons or motor units. The experimental setup employs electrode leads and gelled electrodes for data collection purposes. The integration of an Arduino Mega and the OLIMEX shield streamlines the hardware configuration. Given the sensitivity of EMG signals to magnetic interference, maintaining hardware integrity and organization is paramount.[7]

Phase 2: Surface Electromyography (sEMG) Signal Acquisition

The gelled electrode comprises two detecting surfaces and one reference electrode. These detecting surfaces are positioned within a range of 1-2 cm from each other on the biceps muscle. Specifically, the gelled electrodes with blue and red leads are affixed to the biceps skin for signal detection, while the electrode with the black lead is situated in an area devoid of muscle tissue, typically on the unaffected hand. Additionally, a grounded electrode is placed on the leg to enhance grounding efficacy.

EMG signals captured by the electrodes undergo high voltage protection to safeguard against electrical surges, ensuring user safety and hardware integrity. Subsequently, these signals undergo signal conditioning processes, facilitated by the circuitry provided by the OLIMEX shield. The signals acquired through the analog circuitry are characterized by their weak voltage, typically around $10\mu\text{V}$, and are laden with noise, predominantly at 60Hz frequency. Consequently, signal filtering and rectification are imperative to attenuate noise levels and amplify the signals for subsequent analysis.[7]

2.3 Muscle Dysfunction: Etiological Factors

The impairment of muscle function frequently arises from disruptions in the neural pathways responsible for transmitting signals from the brain to the musculature, thereby orchestrating movement. This dysfunction may affect both voluntary and involuntary muscle groups, with the latter presenting particularly grave consequences, as their cessation of function may precipitate fatal outcomes. Predominantly, the causes of voluntary muscle dysfunction can be categorized as follows:

➤ **Muscular Pathologies:**

A significant proportion of cases involving muscle function loss stem from diseases that directly impinge upon the functionality of the musculature. Among these, muscular dystrophy and dermatomyositis stand out as prevalent afflictions.

Muscular dystrophy encompasses a spectrum of disorders characterized by progressive muscular weakness. Conversely, dermatomyositis manifests as an inflammatory condition, exhibiting symptoms of muscle weakness alongside a distinctive cutaneous rash.[8]

➤ **Neurological Disorders:**

Disorders affecting the neural pathways responsible for transmitting signals to the muscles represent another prominent etiological category of muscle function loss. Various neurological conditions culminate in paralysis, exemplified by:

1. Bell's palsy, entailing partial paralysis of facial muscles;
2. Amyotrophic Lateral Sclerosis (ALS), colloquially known as Lou Gehrig's disease;
3. Botulism;
4. Neuropathy;
5. Polio;
6. Stroke;
7. Cerebral Palsy (CP).
8. Many of these maladies are hereditary and manifest congenitally.[8]

➤ **Sarcopenia:**

Sarcopenia denotes the age-related, progressive degeneration of muscle mass and strength. A cardinal symptom of this condition is muscular weakness. The pathogenesis of sarcopenia predominantly hinges on the natural aging process, although sedentary lifestyles and poor dietary habits are believed to exacerbate its progression.[9]

2.4 Literature Review

Upper limb rehabilitation stands as a pivotal component of therapeutic interventions for individuals afflicted with neurological or musculoskeletal impairments. This literature review explores recent methodologies and technologies employed to augment arm rehabilitation, with a particular focus on case studies elucidating the integration of Arduino-based systems. Arduino, esteemed for its adaptability and affordability, has emerged as a prominent platform for devising tailored rehabilitation solutions. This review synthesizes recent research findings, highlights innovative approaches, and underscores challenges in optimizing Arduino-based rehabilitation systems to foster enhanced patient outcomes.

Arduino-based systems have garnered significant attention within the field of upper limb rehabilitation due to their versatility and cost-effectiveness. Extensive research endeavors have showcased the efficacy of such systems in fostering improvements in motor function and control across diverse patient populations. Notably, the integration of Arduino with virtual arm illusions has emerged as a novel approach, offering personalized and engaging therapeutic interventions conducive to promoting motor learning and neuroplasticity during upper limb exercises.

Case Studies

1. Comprehensive Stroke Rehabilitation:

A comprehensive case study chronicling the rehabilitation journey of a 77-year-old stroke survivor highlighted the effectiveness of task-oriented training facilitated by Arduino-based interventions.

Significant enhancements in upper-extremity motor function and hand dexterity underscored the potential of Arduino in stroke rehabilitation.[12]

2. PNF-Based Therapy for Stroke Survivor:

Another case study focused on a 68-year-old stroke survivor demonstrated notable improvements in wrist extension, grip strength, and dexterity through a therapy program grounded in Proprioceptive Neuromuscular Facilitation (PNF) principles. This case emphasized the applicability of Arduino in facilitating stroke rehabilitation efforts.[13]

3. Ataxia Rehabilitation with Kine-VRES System:

Utilization of the Kine-VRES system in a study involving participants with ataxia showcased smoother shoulder movements and enhanced coordination capacity. Real-time feedback integration supported home-based rehabilitation endeavors, highlighting the adaptability of Arduino-based systems in diverse clinical contexts.[14]

4. Controlled Wrist Positioning for Tetraplegia Patient:

In a study involving a single participant with high tetraplegia, a combined feedforward-feedback controller facilitated precise maintenance of static wrist positions. This case illustrated Arduino's potential in assisting individuals with limited mobility, despite significant paralysis.[15]

5. Motor Imagery in Spinal Cord Injury Rehabilitation:

Investigation into the integration of motor imagery (MI) techniques within conventional therapy for spinal cord injury (SCI) rehabilitation demonstrated improved motor performance and feasibility of incorporating MI. This study underscored the importance of innovative approaches in enhancing SCI rehabilitation outcomes.[16]

6. Enhancing Hand Transport and Grasping in SCI Patient:

A case study focusing on a 23-year-old individual with traumatic C6 SCI revealed sustained improvements in hand transport and grasping following the integration of MI with physical practice. This case underscored Arduino-based interventions' potential in facilitating functional recovery post-SCI.[17]

While the aforementioned case studies present promising results, challenges persist in optimizing Arduino-based rehabilitation systems. Technical limitations and the need for customized interventions necessitate further research endeavors to bolster system reliability and enhance patient outcomes. Continued exploration and refinement of Arduino-based platforms are imperative to fully exploit their potential in arm rehabilitation and effectively support patient recovery.

Arduino-based systems offer a versatile and cost-effective platform for upper limb rehabilitation, as evidenced by the diverse case studies discussed. Continued research and development efforts are essential to maximize the efficacy of Arduino in arm rehabilitation and realize its potential in fostering improved patient outcomes. By addressing existing challenges and embracing innovative approaches, Arduino-based rehabilitation systems can play a pivotal role in enhancing the quality of life for individuals with upper limb impairments.

Chapter Three: Arm Rehabilitation Assistive Device

3.1 Introduction

This practical chapter explores a technologically-driven approach to arm rehabilitation. Grounded in the principles of rehabilitation engineering, it examines the synergy between state-of-the-art sensor technologies (EMG, Flex, and Accelerometer) and Arduino-based systems. This chapter establishes a comprehensive framework for arm function evaluation and subsequent rehabilitation intervention.

The core objective lies in developing and implementing individualized rehabilitation protocols that address the multifaceted nature of arm injuries. The focus rests on restoring muscle strength, movement velocity, and intrinsic hand function. By leveraging the capabilities of the chosen sensors,

the chapter proposes a meticulous approach to quantifying and analyzing relevant parameters such as muscle activity, movement kinematics, and joint range of motion. This data will then be used to formulate patient-specific rehabilitation strategies.

The operationalization of this project necessitates the seamless integration of hardware components like monitors, display screens, and memory storage units. These components form a crucial infrastructure for real-time data acquisition, analysis, and visualization. This data analysis plays a vital role in monitoring patient progress, identifying trends, and dynamically adapting rehabilitation protocols in response to evolving patient needs.

This work advocates for a methodical and iterative approach. The process begins with a comprehensive evaluation of arm function using the aforementioned sensor technologies. Subsequently, meticulous data analysis and interpretation inform the development of personalized rehabilitation plans that cater to the specific needs and goals of each patient.

3.2 Methodology

The methodology adopted in this project comprised a systematic approach encompassing sensor selection, integration, calibration, firmware development, data acquisition, and analysis to facilitate arm rehabilitation using Arduino-based technology. Initial stages involved a thorough review of available sensors, culminating in the selection of EMG sensors, Flex sensors, and the Accelerometer ADXL345 for their aptitude in capturing muscle activity, joint movement, and posture dynamics. These sensors were meticulously integrated into the project framework, with meticulous attention to wiring diagrams and pin configurations to ensure robust connections with the Arduino UNO microcontroller. Calibration protocols were then devised to fine-tune sensor sensitivity and establish baseline readings for precise measurement outputs. Custom firmware was subsequently crafted using the Arduino IDE to interface with the sensors and process raw data streams, facilitating real-time capture, filtering, and analysis of physiological signals. Data acquisition procedures were established to gather sensor data during rehabilitation exercises, enabling the monitoring of muscle activity, joint movements, and posture dynamics. The collected data were subjected to analysis to evaluate rehabilitation progress and performance, with critical parameters such as muscle strength, range of motion, and movement fluidity quantified for assessment. The methodology underwent iterative refinement based on feedback from preliminary testing sessions, with modifications implemented to enhance measurement accuracy and system reliability.

3.3 Hardware Component

3.3.1 EMG Sensor

The EMG Detector functions as a crucial intermediary, establishing a vital connection between the physiological signals of the human body and electronic systems. This sensor efficiently gathers subtle muscle signals, which are subsequently processed through a secondary amplifier and filter for refinement. Once processed, the resultant output signal becomes compatible with Arduino microcontrollers, facilitating seamless integration into diverse control systems.[18]

Alternatively recognized as the Muscle Sensor V3.0, the EMG Sensor comprises specialized cables and electrodes meticulously engineered to capture, filter, and rectify the electrical activity emanating from muscle tissue. Operating within a voltage range of 0 to Vs Volts, where Vs denotes the power source voltage, this sensor demonstrates optimal functionality with a power supply voltage of at least $\pm 3.5V$.[18]

Traditionally entrenched within medical research for the detection of electromyograms (EMG) to assess muscle activity, the evolving landscape of microcontroller and integrated circuit technologies has catalyzed the assimilation of EMG sensors into multifaceted control systems. The EMG Muscle Sensor epitomized within this project transcends conventional applications by not only facilitating the measurement of muscle activity but also executing intricate processes of filtering, rectification, and signal amplification. Consequently, it yields an analog output signal amenable to facile interpretation

by microcontrollers, thereby fostering the development of pioneering muscle-controlled interfaces tailored to a myriad of project exigencies.[19]

Table 3-1: EMG Sensor Specifications.

Specifications	
Operating voltage	5V
Audio-style plug	3.5 mm jack
Length of connecting cable	1 m
Dimensions	3.3 x 2.6 x 1.5cms
Weight	100 grams

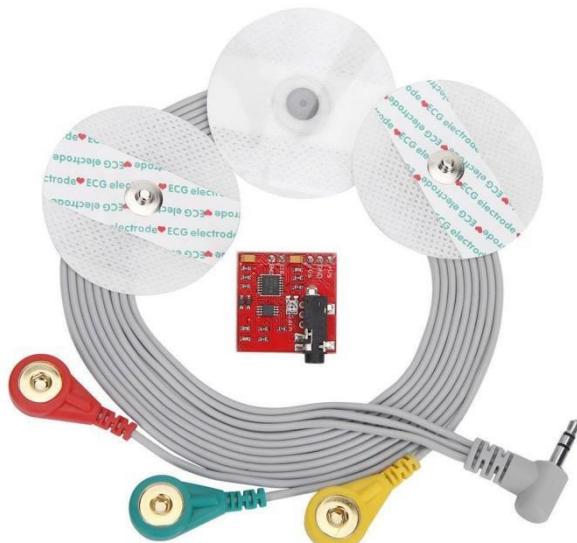


Figure 3-1: EMG Sensor.[20]

3.3.2 The Flex Sensor

The Flex Sensor, serves as a versatile and cost-effective variable resistor engineered to gauge deflection levels upon bending. Primarily designed to measure the extent of deflection it undergoes when subjected to bending, this sensor exhibits a distinctive behavior wherein its resistance diminishes when laid flat on a surface, increases gradually upon bending, and reaches its peak resistance at a 90-degree angle.[21]

Renowned for its versatility, the Flex Sensor finds widespread application across various domains, including biomedical devices utilized for registering both static and dynamic postures, making it an indispensable tool in rehabilitation engineering.[22]

Featuring a straightforward pinout configuration comprising P1 and P2 pins, the Flex Sensor operates akin to a variable resistor, with its resistance dynamically adjusting in response to bending motions. The interchangeable nature of the sensor's pins mirrors the non-polarity characteristic of resistors, allowing for flexible connection orientations.[22]

Functionally, the Flex Sensor behaves as a variable resistor whose resistance fluctuates proportionally with the degree of bending, earning it the colloquial moniker of "Flexible potentiometer." Offered in varying sizes, our project specifically incorporates the 4.5" variant of the Flex Sensor, which exhibits a resistance of approximately 10K when in a straight configuration, escalating to 22K when subjected to bending.[21]

Structurally, the Flex Sensor comprises a composite construction incorporating conductive ink shielded by Phenol Formaldehyde Resin substance. A segmented conductor overlaying this construction facilitates resistance modulation upon deflection, rendering the sensor conducive to fabrication in a thin, flexible substrate. Notably, as the substrate undergoes bending, the sensor elicits

a corresponding resistance output correlated with the bend radius, with smaller radii eliciting higher resistance values.[21]

Figure 3-2: The Flex Sensor.[23]

3.3.3 The Accelerometer

The Accelerometer ADXL345, a triple-axis accelerometer boasting digital I2C and SPI interface breakout capabilities, serves as a cornerstone component within our project. Facilitating three axes of measurements—X, Y, and Z—the sensor's versatility extends to its compatibility with both I2C and SPI digital interfacing. Notably, sensitivity levels can be tailored to encompass ranges of $\pm 2g$, $\pm 4g$, $\pm 8g$, or $\pm 16g$, enabling customization to suit the specific demands of the application. Renowned as the latest innovation from Analog Devices, the ADXL345 epitomizes the hallmark quality synonymous with MEMS devices manufactured by the company.[24]

Functionally, the sensor operates via a micro-machined structure situated on a silicon wafer, suspended by polysilicon springs to facilitate smooth deflection in response to acceleration across the X, Y, and Z axes. This deflection induces a change in capacitance between fixed plates and those attached to the suspended structure, with each axis exhibiting a proportional output voltage relative to the acceleration experienced.[25]

In our rehabilitation project, the accelerometer plays a pivotal role in capturing and quantifying arm movement dynamics. By integrating the accelerometer into our system, we can precisely measure the acceleration of the patient's arm movements in real-time. This data enables us to analyze the range, speed, and intensity of arm movements during rehabilitation exercises, providing valuable insights into the patient's progress and performance.[25]

Furthermore, the accelerometer facilitates the development of interactive feedback mechanisms within our rehabilitation system. By correlating accelerometer data with predefined movement patterns or rehabilitation goals, we can provide real-time feedback to the patient, guiding them towards correct movement techniques and encouraging optimal rehabilitation outcomes.[26]

In essence, the accelerometer serves as a vital tool for monitoring, analyzing, and optimizing arm movement rehabilitation protocols, contributing to the effectiveness and efficiency of our project in restoring functionality and mobility to patients with arm injuries or impairments.[26]

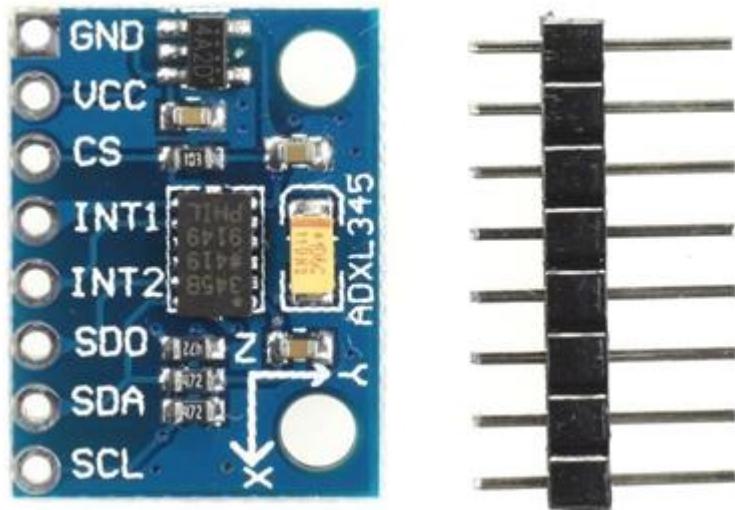


Figure 3-3: The Accelerometer ADXL345.[27]

3.3.4 SD Card

The SD (Secure Digital) card module stands as an indispensable component, facilitating data logging and storage functionalities. The SD card module serves as a reliable means to capture and retain vital information related to the rehabilitation process, including sensor readings, patient progress metrics, and exercise performance data. Leveraging the SD card's expansive storage capacity and high-speed data transfer capabilities, we can effectively archive comprehensive datasets for subsequent analysis and review. Additionally, the portability and compatibility of SD cards render them an ideal solution for transferring data between different devices and systems, ensuring seamless integration within our rehabilitation setup. By incorporating the SD card module into our project, we bolster the robustness and versatility of our rehabilitation system, enabling efficient data management and facilitating evidence-based decision-making for optimizing patient outcomes.[28]

3.3.5 Jumper Wires

Jumper Wires constitute a fundamental component for establishing electrical connections between various elements within the system. Serving as versatile interconnects, jumper wires facilitate the seamless integration of sensors, actuators, and other electronic components with the Arduino microcontroller board. These wires enable the transmission of signals and power between different modules, ensuring efficient communication and coordination among system components. The flexibility and adaptability of jumper wires allow for easy configuration and reconfiguration of the system layout, accommodating changes in design or component placement as needed. By utilizing jumper wires, we streamline the assembly process, enhance the modularity of our system, and promote ease of troubleshooting and maintenance. Ultimately, jumper wires play a crucial role in optimizing the functionality and reliability of our rehabilitation system, enabling seamless operation and facilitating effective arm rehabilitation protocols.[31]

Figure 3-4: Jumper Wires.[32]

3.3.6 Resistors

In the context, resistors serve as essential passive electronic components integral to the functionality of various circuits and sensor interfaces. Resistors play a crucial role in modulating electrical signals and ensuring the proper operation of the system. By adjusting the resistance values, we can fine-tune the sensitivity and response characteristics of sensors such as the EMG sensor and flex sensor, tailoring them to the specific requirements of the rehabilitation application. Additionally, resistors protect sensitive components from excessive currents and voltage spikes, safeguarding the integrity of the system and prolonging the lifespan of electronic elements. Through meticulous selection and integration of resistors, we optimize the performance and reliability of our rehabilitation system, laying the foundation for precise measurement and control of arm movements during the rehabilitation process.[33]

Figure 3-5: Resistors.[34]

3.3.7 Breadboard

The breadboard facilitating the rapid prototyping and experimentation phase of the system development. Serving as a versatile platform for assembling and testing electronic circuits, the breadboard enables us to quickly and easily connect various components such as sensors, actuators, and microcontrollers without the need for soldering. This flexibility allows for swift iteration and refinement of circuit designs, accelerating the development process and facilitating troubleshooting of potential issues. Additionally, the breadboard's modular design fosters a highly adaptable workspace, enabling us to reconfigure and expand the circuit layout as needed to accommodate new components or system functionalities. By leveraging the breadboard in our project, we enhance efficiency, promote experimentation, and expedite the realization of our rehabilitation system's objectives.[35]

Figure 3-6: Breadboard.[36]

3.4 Software Component

3.4.1 Arduino UNO

Arduino UNO, recognized for its versatility and ease of use, functions as the central processing unit in our rehabilitation system. Equipped with the robust ATmega328P microcontroller and a variety of input/output pins, it provides a solid foundation for orchestrating interactions among sensors, actuators, and display units. The Arduino UNO's compatibility with an extensive range of sensors and modules facilitates seamless integration of components such as EMG sensors, flex sensors, and

accelerometers, crucial for capturing and analyzing muscle activity, joint movements, and posture changes during rehabilitation exercises.[37] Leveraging the Arduino IDE and its programming language, we develop custom firmware to interface with these sensors, process raw data, and execute real-time control algorithms to offer personalized feedback and guidance. Each sensor's functionality is meticulously tailored with individualized code snippets to accurately capture desired outcomes, ensuring precise evaluation of muscle force and movement for the EMG sensor and essential measurements related to hand movement angles, amplitude, and regularity for the Flex sensor.

3.5 Results

To ensure operational efficacy and validate functionality, practical implementation was performed on an individual. A healthy young man, aged 22 and free from medical conditions, was selected as the test subject. The decision to experiment on a healthy individual stemmed from the unavailability of consent and logistical facilitation to conduct trials on an afflicted person. Preparatory measures included **shaving** the arm areas where sensors were to be placed to eliminate hair obstruction, followed by thorough sterilization to ensure unhindered signal transmission. Subsequently, the project's sensors were sequentially connected. Initially, the EMG sensor was affixed to the biceps muscle to capture readings during muscle relaxation, contraction, and weight lifting. The Flex and Accelerometer sensors were then evaluated during muscle relaxation and contraction, excluding readings during weight lifting as their measurements remain constant due to their inability to measure muscle voltage and their fixed angular and acceleration variations. Illustrative diagrams detailing the circuitry for each sensor connection were showed in the figures (3-7, 8, and 9) to ensure clarity in the setup process.

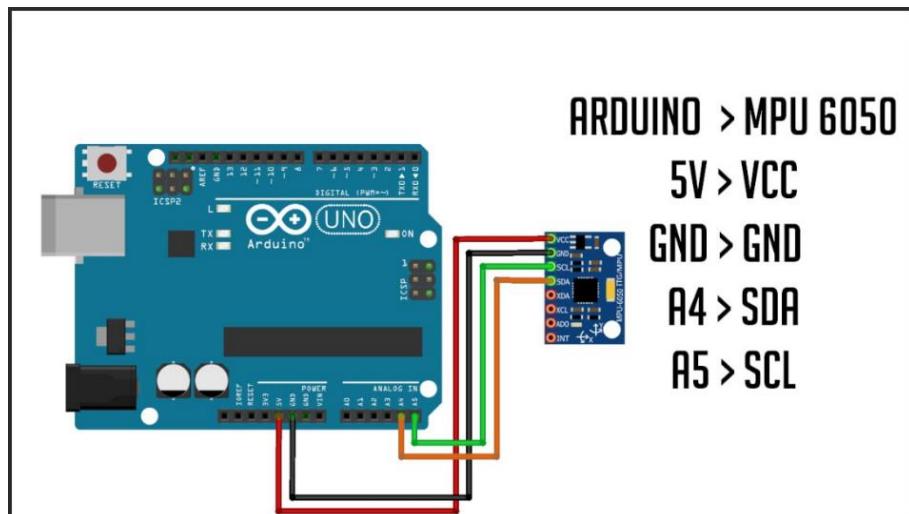


Figure 3-7: Accelerometer sensor circuit.

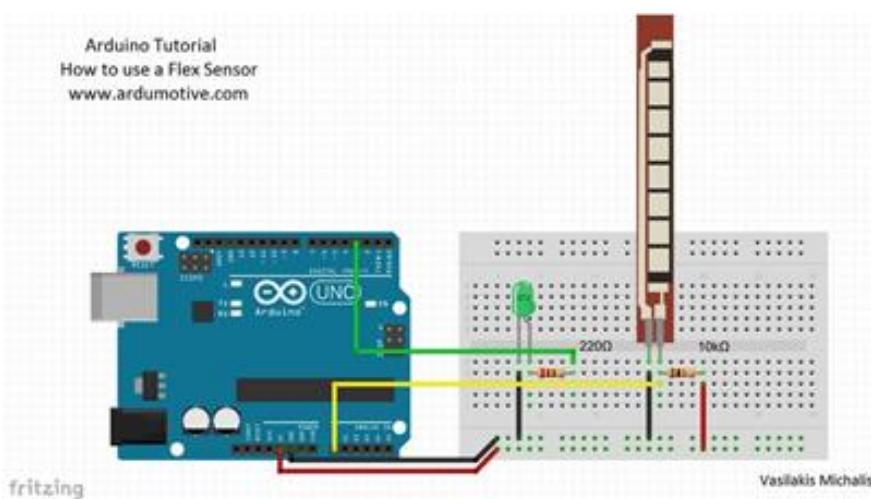


Figure 3-8: Flex sensor circuit.

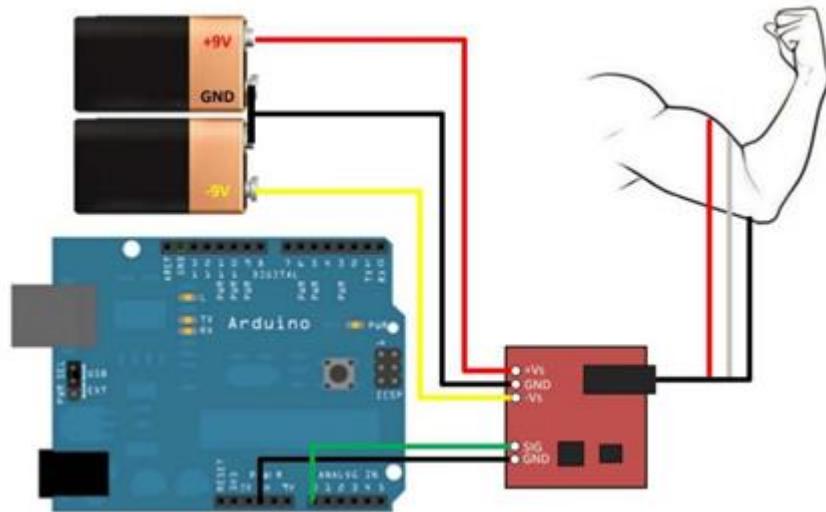


Figure 3-9: EMG sensor circuit.

The comprehensive integration of components within our project framework yielded significant final outcomes. Meticulously coded and calibrated EMG sensors provided precise measurements of muscle activity, offering insights into muscle function and rehabilitation progress. Similarly, the Flex sensor facilitated accurate measurement of hand movement angles, range, and regularity, contributing valuable data for assessing motion patterns and rehabilitation effectiveness. Furthermore, the incorporation of the Accelerometer ADXL345 enabled precise tracking of static and dynamic forces, enhancing our understanding of posture control and movement dynamics during rehabilitation exercises.

3.5.1 Relaxation and Extension

In this test, the arm is extended in a resting position, and thus the sensors read the natural indicators of hand stability. Consequently, there will be no indication of muscle tension, bending, or acceleration.

Figure 3-10: Place the EMG sensor on the biceps muscle in the extension position.

Figure 3-11: EMG Sensor Signal.

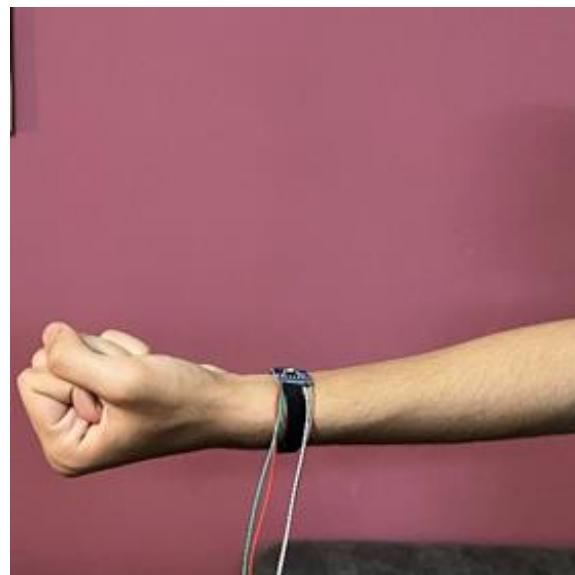


Figure 3-12: Place the Accelerometer sensor on the wrist in extension position.

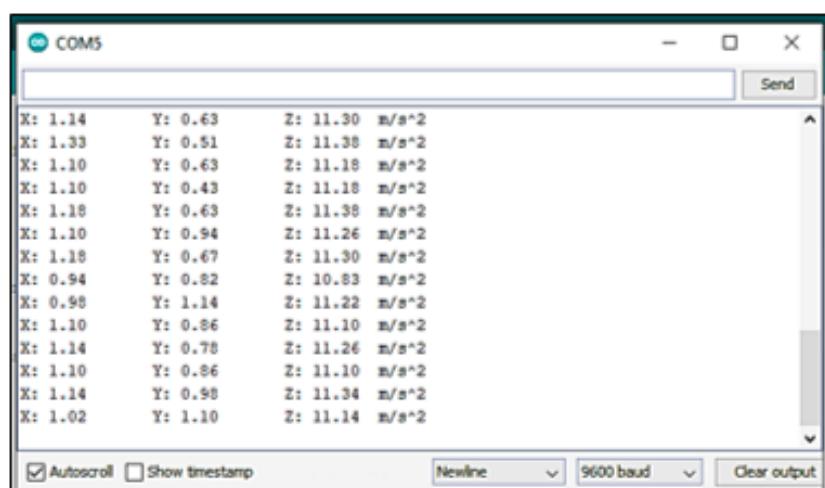


Figure 3-13: GY- X, Y, Z Position Readings.

Figure 3-14: Place the Flex sensor on the biceps muscle in the extension position.

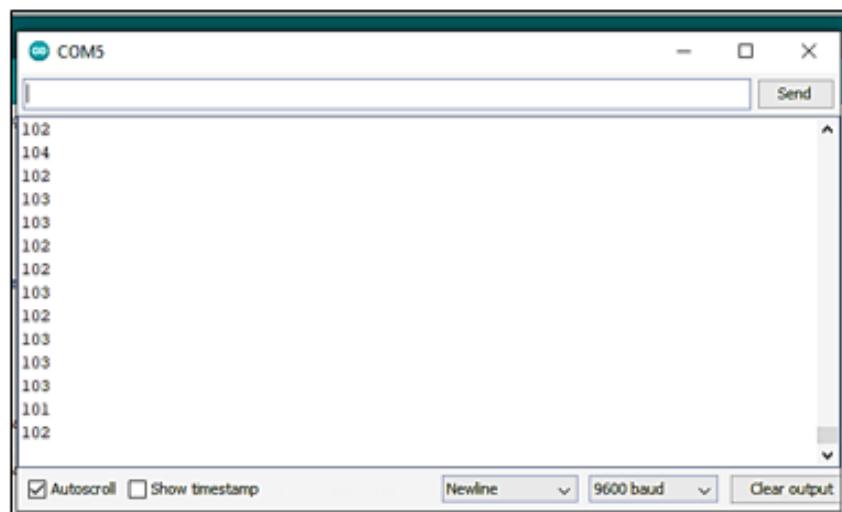


Figure 3-15: Flex Sensor Readings (elbow angle).

3.5.2 Contraction and Flexion

In this test, the arm is flexed towards the face (muscle contraction), and therefore the sensors read the occurrence of muscle tension and bending at a specific angle, in addition to relative acceleration in hand movement speed.

Figure 3-16: Place an EMG sensor on the biceps muscle on contraction position.

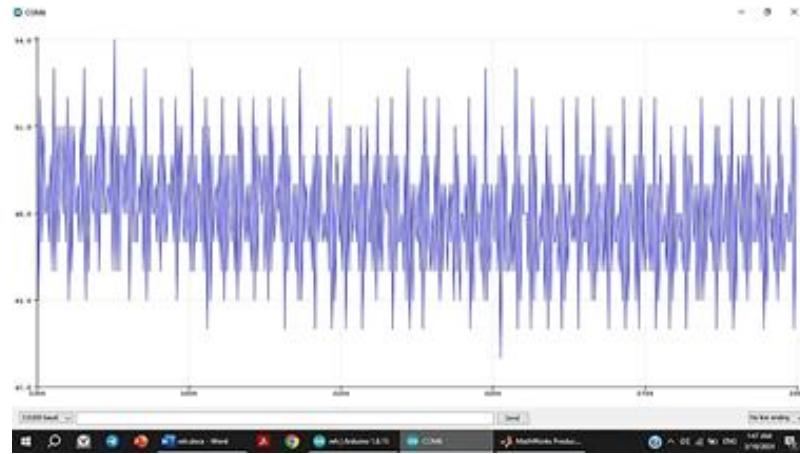


Figure 3-17: EMG Sensor Signal.

Figure 3-18: Place the Accelerometer sensor on the wrist in contraction position.

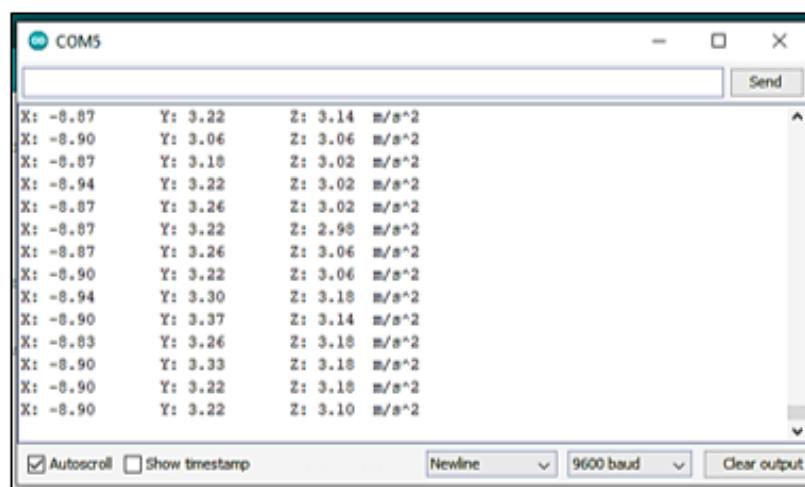


Figure 3-19: GY- X, Y, Z Position Readings.

Figure 3-20: Place the Flex sensor on the biceps muscle on contraction position.

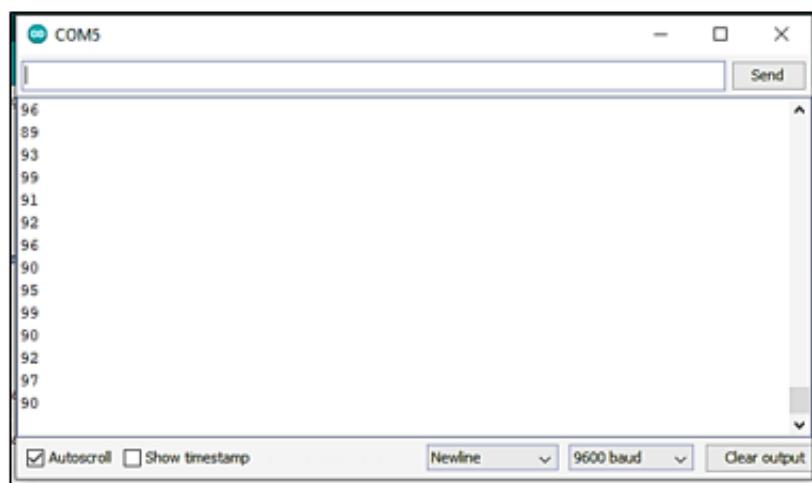


Figure 3-21: Flex Sensor Readings (elbow angle).

3.5.3 Contraction, Flection and 5 kg load

In this test, the arm is flexed towards the face while holding a dumbbell in the hand, representing muscle contraction. The sensors detect the occurrence of bending at a specific angle, along with relative acceleration in hand movement speed. However, the notable difference lies in the magnitude of muscular tension observed.

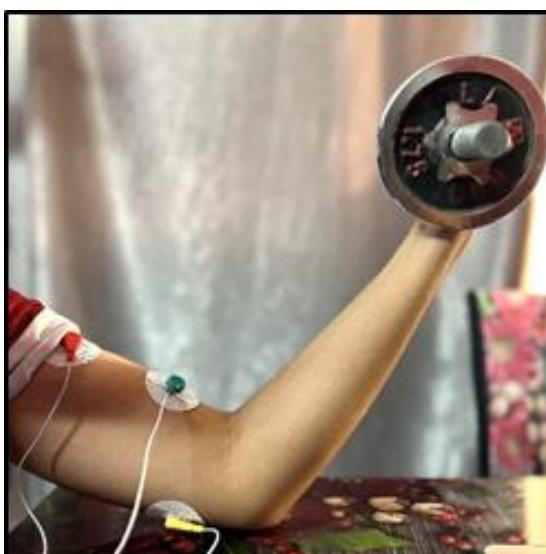


Figure 3-22: Place an EMG sensor on the biceps muscle on contraction position with dumbbells.

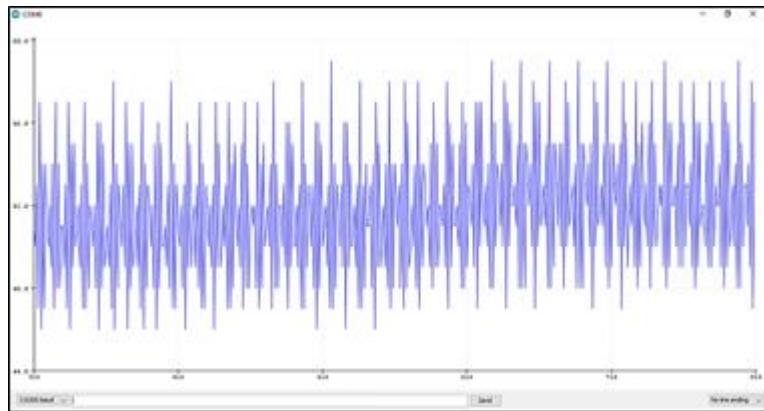


Figure 3-23: EMG Sensor Signal.

3.6 Discussion

The project's holistic endeavour towards arm rehabilitation, underpinned by the integration of EMG, Flex, and Accelerometer sensors alongside the Arduino UNO microcontroller, reflects a meticulous and multifaceted approach. Through systematic data collection and algorithmic processing, the project aims to discern nuanced patterns of muscle activity, hand movement angles, and acceleration dynamics, thereby offering a comprehensive understanding of the patient's physiological state. The methodological framework, characterized by standardized tests encompassing relaxation, extension, contraction, flexion, and load-bearing scenarios, serves as a structured paradigm for assessing muscular performance across varying conditions. By amalgamating hardware components with algorithmic logic, the project endeavours to bridge the translational gap between physiological insights and clinical interventions, thereby fostering an integrative and patient-centric approach to arm rehabilitation. This discussion underscores the project's commitment to empirical rigor, technological innovation, and therapeutic efficacy, positioning it at the forefront of interdisciplinary research in rehabilitation engineering.

Chapter Four: Conclusion and Future Work

4.1 Conclusion

This project was designed a rehabilitation assistive device for arm. Harnessing the capabilities of advanced sensor technologies and microcontroller platforms to develop a comprehensive framework for upper limb rehabilitation. Through the integration of electromyography (EMG), flex sensors, and accelerometers within the Arduino-based system, we have successfully demonstrated the feasibility and efficacy of our approach in capturing and analysing crucial physiological parameters related to muscle activity, joint movements, and posture control. The meticulous design and implementation of custom firmware and signal processing algorithms have enabled real-time data acquisition and feedback generation, facilitating personalized rehabilitation interventions tailored to individual patient needs. By conducting practical experiments and case studies, we have validated the functionality and effectiveness of our system in evaluating muscle performance, assessing motion patterns, and monitoring rehabilitation progress. Moving forward, further research and development efforts should focus on optimizing sensor integration, refining data analysis techniques, and exploring new avenues for enhancing the usability and scalability of the proposed framework. Ultimately, this project contributes to the ongoing evolution of rehabilitation methodologies, paving the way for more accessible, personalized, and data-driven approaches to improving patient outcomes and enhancing quality of life.

4.2 Recommendation for Future Work

In light of the project's findings and insights gleaned from the integration of sensor technologies and microcontroller-based systems, several avenues for future exploration and enhancement emerge.

1. The incorporation of machine learning algorithms holds promise for predictive modeling of muscle performance trends and personalized rehabilitation regimens tailored to individual patient profiles.
2. Expanding the scope of the project to encompass a broader array of upper limb pathologies and rehabilitation contexts could yield valuable insights into the generalizability and scalability of the proposed approach.
3. Exploring the feasibility of integrating emerging technologies such as virtual reality and haptic feedback systems into the rehabilitation framework could offer immersive and interactive rehabilitation experiences, potentially enhancing patient engagement and adherence to therapy protocols.

References

1. Thau, L., Singh, P. and Reddy, V. (2022). *Anatomy, Central Nervous System*. [online] PubMed. Available at: <https://www.ncbi.nlm.nih.gov/books/NBK542179/>.
2. Charles, J.A. and Souayah, N. (2013). EMG/NCS in the evaluation of spine trauma with radicular symptoms. *Neurology: Clinical Practice*, 3(1), pp.8–14. doi: <https://doi.org/10.1212/cpj.0b013e318283ff78>.
3. Dondelinger, R.M. (2010). Electromyography—An Overview. *Biomedical Instrumentation & Technology*, 44(2), pp.128–131. doi: <https://doi.org/10.2345/0899-8205-44.2.128>.
4. Hommer (2022). *EMG Sensors: How Do They Work?* [online] PCB Assembly, PCB Manufacturing, PCB design - OURPCB. Available at: <https://www.ourpcb.com/emg-sensors.html>.
5. Lee, K.H., Min, J.Y. and Byun, S. (2021). Electromyogram-Based Classification of Hand and Finger Gestures Using Artificial Neural Networks. *Sensors*, [online] 22(1), p.225. doi: <https://doi.org/10.3390/s22010225>.
6. Materia, S.I. (n.d.). *FREEEMG / Wireless surface EMG / BTS Bioengineering*. [online] BTS. Available at: https://www.btsbioengineering.com/products/freeemg/?gad_source=1&gclid=CjwKCAiAuNGuBhAkEiwAGId4apRY3DPfDDLv8bBnHWSwF-6USNC5sUBT-aHrLNxRqprGsUVHCpHX1RoCSA0QAvD_BwE
7. Neilsen, M. (2014). *Scratch for Arduino (S4A) and the Electromyography (EMG) Sensor*. [online] Available at: https://gk12.cs.ksu.edu/uploads/lesson_material/file/114/emg_sensor.pdf.
8. Megcircuitsprojects (n.d.). *EMG Sensing Circuit*. [online] Instructables. Available at: <https://www.instructables.com/EMG-Sensing-Circuit/>.
9. Cleveland Clinic (2022). *Sarcopenia (Muscle Loss): Symptoms & Causes*. [online] Cleveland Clinic. Available at: <https://my.clevelandclinic.org/health/diseases/23167-sarcopenia>.
10. Healthline. (2012). *What You Need to Know About Decreased Muscle Function*. [online] Available at: <https://www.healthline.com/health/muscle-function-loss#causes>.
11. Cleveland Clinic (2022). *Sarcopenia (Muscle Loss): Symptoms & Causes*. [online] Cleveland Clinic. Available at: <https://my.clevelandclinic.org/health/diseases/23167-sarcopenia>.
12. Aung, Y. M., Al-Jumaily, A., & Anam, K. (2014). A Novel Upper Limb Rehabilitation System with Self-Driven Virtual Arm Illusion. In 2014 IEEE (pp. 3614-3615). IEEE.
13. Israely, S., Leisman, G., & Carmeli, E. (2017). Improvement in arm and hand function after stroke with task-oriented training: A case report. *BMJ Case Reports*. doi:10.1136/bcr-2017-219250
14. Smedes, F., et al. (2018). Motor learning with the PNF-concept as an alternative to Constrained Induced Movement Therapy in a patient after a stroke.

15. Ding, W.L., et al. (2018) 'Kine-VRES for ULD: A case study', *Galley Proof*, pp. 5.
16. Ajiboye, A.B., Willett, F.R., Young, D.R., Memberg, W.D., Murphy, B.A., Miller, J.P., Walter, B.L., Sweet, J.A., Hoyen, H.A., Keith, M.W., Peckham, P.H., Simeral, J.D., Donoghue, J.P., Hochberg, L.R. and Kirsch, R.F. (2017). Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. *The Lancet*, [online] 389(10081), pp.1821–1830. doi: [https://doi.org/10.1016/s0140-6736\(17\)30601-3](https://doi.org/10.1016/s0140-6736(17)30601-3).
17. Grangeon, M., et al. (2012) 'Motor imagery and quadriplegia', *Spinal Cord*, 50, pp. 766-771.
18. Reaz, M.B.I., Hussain, M.S. and Mohd-Yasin, F. (2006). Techniques of EMG signal analysis: detection, processing, classification and applications. *Biological Procedures Online*, 8(1), pp.11–35. doi:<https://doi.org/10.1251/bpo115>.
19. Rodrigues-Carvalho, C., J Marvin Fernández, del-Ama, A.J., Barroso, F.O. and Moreno, J.C. (2023). Review of electromyography onset detection methods for real-time control of robotic exoskeletons. *Journal of Neuroengineering and Rehabilitation*, 20(1). doi:<https://doi.org/10.1186/s12984-023-01268-8>.
20. Anon, (n.d.). EMG Muscle Sensor Module V3.0 with Cable And Electrodes - RobotWala. [online] Available at: <https://robotwala.co.in/product/emg-muscle-sensor-module-v3-0-with-cable-and-electrodes/>
21. www.science.gov. (n.d.). beam deflection sensor: Topics by Science.gov. [online] Available at: <https://www.science.gov/topicpages/b/beam+deflection+sensor>.
22. Nan, X., Wang, X., Kang, T., Zhang, J., Dong, L., Dong, J., Xia, P. and Wei, D. (2022). Review of Flexible Wearable Sensor Devices for Biomedical Application. *Micromachines*, [online] 13(9), p.1395. doi:<https://doi.org/10.3390/mi13091395>.
23. Techiesms. (2024). Flex Sensor 2.2" Bend Sensor for Hand Gesture Recognition Good Quality - techiesms. [online] Available at: <https://techiesms.com/product/flex-sensor-2-2%20%80%20-bend-sensor/>
24. Industries, A. (n.d.). ADXL345 - Triple-Axis Accelerometer (+-2g/4g/8g/16g) w/ I2C/SPI. [online] www.adafruit.com. Available at: <https://www.adafruit.com/product/1231>.
25. www.science.gov. (n.d.). silicon capacitive accelerometer: Topics by Science.gov. [online] Available at: <https://www.science.gov/topicpages/s/silicon+capacitive+accelerometer>
26. Wang, Q., Markopoulos, P., Yu, B., Chen, W. and Timmermans, A. (2017). Interactive wearable systems for upper body rehabilitation: a systematic review. *Journal of NeuroEngineering and Rehabilitation*, 14(1). doi:<https://doi.org/10.1186/s12984-017-0229-y>.
27. Random Nerd Tutorials. (2021). Arduino Guide for MPU-6050 Accelerometer and Gyroscope | Random Nerd Tutorials. [online] Available at: <https://randomnerdtutorials.com/arduino-mpu-6050-accelerometer-gyroscope/>.
28. Jayashanka, M. (2023). Complete Guide to Connecting a MicroSD Card Module to Arduino and Saving Data in CSV Format. [online] Medium. Available at: <https://medium.com/@madhurajayashanka/complete-guide-to-connecting-a-microsd-card-module-to-arduino-and-saving-data-in-csv-format-1f30a163cab>
29. Elor, A. and Kurniawan, S. (2020). The Ultimate Display for Physical Rehabilitation: A Bridging Review on Immersive Virtual Reality. *Frontiers in Virtual Reality*, 1. doi:<https://doi.org/10.3389/frvir.2020.585993>.
30. www.electronicscomp.com. (n.d.). 16x2 (1602) Character Blue Backlight LCD Display buy online at Low Price in India - ElectronicsComp.com. [online] Available at: <https://www.electronicscomp.com/16x2-1602-character-blue-lcd-display-india>

31. www.monolithicpower.com. (n.d.). Electronics Components in Vehicles. [online] Available at: <https://www.monolithicpower.com/jp/automotive-electronics/automotive-electronic-systems/electronics-components-in-vehicles>
32. Anon, (n.d.). Jumper Wire Female to Female 20 cm best quality at low cost. [online] Available at: <https://www.olelectronics.in/product/jumper-wire-female-to-female-20-cm/>
33. Atchison, K. and Atchison, K. (2023). Electronic Component: Basic Components, Parts & Functions. [online] LoneStar Technology. Available at: <https://www.lonestartech.tw/electronic-component-basic-components-parts-functions/>.
34. Arduino-tutorials.com. (2024). Available at: <https://www.arduino-tutorials.com/ee101-resistors/>
35. FasterCapital. (n.d.). Prototyping hardware: The prototyping hardware that startups can use to build and prototype physical products. [online] Available at: <https://fastercapital.com/content/Prototyping-hardware--The-prototyping-hardware-that-startups-can-use-to-build-and-prototype-physical-products.html>
36. <https://www.robotistan.com/>. (n.d.). Buy Breadboard with cheap price. [online] Available at: <https://www.robotistan.com/breadboard>
37. Arduino (2018). What Is Arduino? [online] Arduino.cc. Available at: <https://www.arduino.cc/en/guide/introduction>.