

The Importance of Security Measures in Chemical Technology

Davronov Bakhodir

Senior teacher of Tashkent Information Technology University Samarkand branch

Abstract: This article discusses the importance of chemical technologies and makes recommendations for their development

Keywords: Technology, System, Safety, Staff, Transportation, Chemical engineering, Operations, Sterilization.

Introduction. It would take too long to discuss all the numerous contributions of chemical engineers to societal development. Chemical engineers work in manufacturing, pharmaceuticals, healthcare, design and construction, pulp and paper, petrochemicals, food processing, specialty chemicals, polymers, biotechnology, and environmental health and safety industries, among others. Within these industries, chemical engineers rely on their knowledge of mathematics and science, particularly chemistry, to overcome technical problems safely and economically.

Chemical engineering is the field of engineering which deals with the application of the principles of science and engineering to design, construct and manufacture processes for large scale conversion of raw materials into valuable products. The basic sciences involve material and energy balances, transport phenomena, thermodynamics, unit operations, separation processes and process control.

Chemical engineers have always been at the forefront of environmental protection. With a unique perspective that straddles both science and engineering, they work in teams with other professionals. By designing complex solutions to our vexing environmental challenges, chemical engineers are striving to save the world we live in. One success is the conversion of the sculpture oxides in power plant gases into gypsum for use in wallboard. The removal of trace contaminants from drinking water by reverse osmosis is yet another.

The chemical engineer is saddled with the responsibility of improving the conversion of raw food stuffs into safe consumer products of the highest possible quality. Chemical engineers develop advanced materials and techniques used for, among other things chemical and heat sterilization, advanced packaging, monitoring and control, which are essential to the highly automated facilities for the high output production of safe food products.

Also Chemical engineering unit operations and methodologies, developed for other industrial purposes, are used by the food industry including milling, drying and extrusion, refrigeration, heat and mass transfer, membrane based separation, concentration, centrifugation, fluid flow and bending, powder and bulk solids mixing, pneumatic conveying and process modelling, monitoring and control. The food related applications of chemical engineering technology involves interdisciplinary teamwork, which in addition to the expertise of chemical engineers, draws on that of food technologists, microbiologists, chemists, mechanical engineers and biochemists, geneticists and others.

Chemical engineering companies use the latest technology to turn raw materials into useful products. Depending on the industry, they may develop or improve manufacturing equipment, create new processes for industrial projects and find new uses for existing materials. The work of a chemical engineer is extremely varied and includes everything from lab research to field operations. Be prepared

to travel to plants or worksites, conduct debottleneck studies, perform safety and risk assessments, test production methods and more. You may also need to estimate production costs, design new recycling plants, run tests on pilot plants and establish safety procedures. Chemical engineers are vitally important to the effort to grow food more efficiently and sustainably. They work on improving fertilizers, herbicides and pesticides as well as helping to make crops hardier and more disease resistant. Chemical engineers are also integral to the effort to extend the shelf life of processed and packaged foods and to ensure the safety of food production via temperature, humidity and other controls.

While chemists work in the lab on pure chemistry to develop compounds that can cure diseases, chemical engineers also play a part in the pharmaceutical industry. Their role is to figure out how to move from the lab into the production of medicines via process engineering. They must design ways to manufacture drugs on a large scale at a production price that works for the market.

Chemical engineers can work in any industry that uses material substances because they solve problems about the production or use of chemicals and other materials. They can create new drugs to relieve colds, find better ways to preserve canned goods or create airplane coatings that resist weather damage. They troubleshoot problems with manufacturing, develop new methods of production, ensure compliance with safety and environmental regulations, and development safety procedures for those working with hazardous chemicals. The profession requires a minimum bachelor's degree in chemical engineering, which is more commonly called chemical and biomolecular engineering. A professional engineer's license may enhance job prospects.

Biotech research is advancing at a fast pace, fueled by the demand for innovation. The development of biodegradable plastics, biofuels and other breakthrough products would not have been possible without the hard work of those working in this industry. You, too, can become a biotechnology scientist and leave your mark on the world. It won't be easy to break into this field, but you may get the chance to work alongside some of the brightest minds. Biotechnology is based on the same concept, but it's implemented at a larger scale and involves more complex processes. Think about genetically modified crops, bioplastics, gene therapy or molecular tests. Genetic engineering, for example, made crops more resistant to plant diseases and reduced the need for synthetic pesticides.

Biotechnology is widely used in several major industries, from agriculture to health care. Commodity chemicals, biofuels and other industrial goods can be produced using biotech applications. Companies worldwide invest billions of dollars in the research and development of biotech drugs, vaccines, food products and more.

While it's true that biotechnology raises ethical issues, its potential applications are almost limitless. Gene therapy, for example, could save millions of lives. Biotechnology also enables scientists to develop more potent drugs, test the safety of vaccines or study human diseases on transgenic animals. A career in this field would allow you to stay at the forefront of innovation and change the world through your work. This growing industry offers excellent career prospects. Regeneron Pharmaceuticals, Celgene, Amgen, Biogen and other global corporations are constantly seeking new talent. There are numerous job openings for people with a background in biological science, immunology, pharmacology and other relevant areas. Most employers require a Ph.D. degree, but it's possible to find work with a bachelor's or master's degree. Make sure you can commit to continuous learning and improvement if you want to excel in your role.

Biotechnology researchers spend most of their time in labs. Some are in charge of testing new medications or developing vaccines, while others study the environment. In general, they work closely with fellow researchers and participate in team meetings. Their day-to-day duties depend on the industry and type of job. For example, a biotechnologist working in the pharmaceutical industry has different responsibilities than one specialized in agro-biotechnology.

These professionals create or improve products or processes, from medications and diagnostic

tests to enzymes and industrial biotech applications. Depending on the job, they specialize in stem cell research, fuel alternatives, crop protection, forensics or genetics. Their responsibilities may include:

- Conducting studies on living organisms, such as bacteria and cells
- Performing routine lab procedures, such as polymerase chain reaction (PCR) testing
- Conducting in-depth data analysis and experiments
- Crossbreeding plants or animals
- Recording and sharing their observations
- Publishing their findings in scientific journals
- Maintaining laboratory equipment
- Using specialized software

Environmental biotechnologists use their skills to create sustainable raw materials or renewable energy sources. Medical biotechnology scientists, on the other hand, study human genetics and diseases, create new drugs and develop innovative therapies. Industrial biotechnologists may develop products or processes to improve soil quality and animal feed.

References:

1. Эрназарова, Г. Х. (2020). ЗАМОНАВИЙ ЎЗБЕК ШЕЪРИЯТИНИНГ МЕДИАТИВ ТАРИХИЙ АСОСЛАРИ. МЕЖДУНАРОДНЫЙ ЖУРНАЛ ИСКУССТВО СЛОВА, 3(6).
2. ЭРНАЗАРОВА, Г. Х. (2020). MEDITATIVE PECULIARITIES IN THE POETRY OF YULDASH ESHBEK. *Иностранные языки в Узбекистане*, (4), 246-254.
3. Feruza, R. Psychodiagnostics Of The Study Of Teenager's Tendence To Deviation (Functional Approach).
4. Feruza, R. (2023). SOCIAL-PSYCHOLOGICAL FACTORS OF PREVENTING ADOLESCENT BEHAVIOR. *Open Access Repository*, 4(2), 4-10.
5. Gulbakhor, E. (2023). Possibilities of increasing the standard of living of the population of the regions in socio-economic development. *Best Journal of Innovation in Science, Research and Development*, 2(9), 412-416.
6. Gulbakhor, E., & Golib, Z. (2023). FUNDAMENTALS OF HUMAN CAPITAL DEVELOPMENT IN UZBEKISTAN. *Best Journal of Innovation in Science, Research and Development*, 2(9), 417-422.
7. Khamidovich, T. S., Ikramovich, R. Z., Rashidovich, M. N., & Mirjamilovich, I. A. (2021). Specific Features And Development Trends Of The Activities Of The Infrastructure Of The Insurance Market Of Uzbekistan. *Journal of Contemporary Issues in Business and Government*, 27(1), 1545-1550.
8. Ikramovich, R. Z., & Mirjalilovich, I. A. (2021, June). THE IMPORTANCE OF TAX POLICY IN THE FORMATION OF BUDGET REVENUES. In " ONLINE-CONFERENCES" PLATFORM (pp. 122-124).
9. Amanullayeva, K. M., & Shuhratova, V. J. Attention to the State Language in the Educational Process. *IJRASET, ISSN*, 2321-9653.
10. Amanullayeva, K. M., Kizi, S. V. J., Botirovna, M. V., & Khudoyberdieva, Z. S. Expressing Uzbek neologisms in Japanese and Korean languages and using them in literary works as a concept.
11. Gulomxasanov, E., Amirova, F. S. Q., & Amirov, A. S. O. G. L. (2021). IQTISODIYOTNI RIVOJLANTIRISHDA ICHKI TURIZIMNING ORNI VA AHAMIYATI. *Scientific progress*, 2(6), 171-174.
12. Tukhliev, I. S., & Khayitbaev, R. (2014). Fundamentals of tourism. *Textbook-T: Science and Technology*.

13. Djuraev, B. (2015). CLASSROOM ORGANIZATION AND EFFICIENCY OF JURISTIC KNOWLEDGE MASTERING BY PROFESSIONAL COLLEGE STUDENTS. *European Journal of Research and Reflection in Educational Sciences Vol, 3(2)*.
14. Bakhrom, J. THE INFLUENCE OF THE CHARACTERISTICS OF THE NERVOUS SYSTEM ON THE PROCESS OF LEGAL LITERACY. *ВЕСТНИК ИНТЕГРАТИВНОЙ ПСИХОЛОГИИ*, 66.
15. Djuraev, B. (2016, February). ОБЩАЯ ПСИХОЛОГИЯ И ПСИХОЛОГИЯ ЛИЧНОСТИ УЧЕБНАЯ МОТИВАЦИЯ УСВОЕНИЯ ЮРИДИЧЕСКИХ ЗНАНИЙ В КОЛЛЕДЖАХ Бахром Джураев. In *Контактная информация организационного комитета конференции* (p. 16).
16. Sadibekova, B., Saidakhmedova, N., Makhmudova, A., Abdukhamidov, S., & Mukhamadiev, A. (2021). To determine the role and importance of marketing research in the development of tourist routes. *Middle European Scientific Bulletin*, 8.
17. Maftuna, N. (2023). The role and importance of marketing sphere in tourism industry. *Best Journal of Innovation in Science, Research and Development*, 2(12), 662-666.
18. Ibragimov, K., & Marques, J. (2022). Outbound tourism demand in Central Asia: A gravity model applied approach.