

Analysis of Battery Management System Using Lithium Ferro Phosphate for E-Vehicle

M. Shagar Banu¹, A. Prabha*², M. Mohamed Dhaqsin Ali³, M. Noufal Shabdhar⁴, S. Vignesh⁵

^{1,2}*Dhaanish Ahmed College of Engineering, Chennai, Tamil Nadu, India*

^{3,4,5}*Department of Electrical and Electronics Engineering, Dhaanish Ahmed College of Engineering, Padappai, Chennai, Tamil Nadu, Chennai, India*

*Correspondence: prabha.a@dhaanishcollege.in

Abstract: Common rechargeable batteries with unique properties and uses are lead-acid and lithium ferrophosphate (LiFePO₄) batteries. In terms of important factors including energy density, cycle life, charging efficiency, cost, and environmental impact, several battery technologies are succinctly compared in this abstract. LiFePO₄ batteries have a higher energy density than lead-acid batteries, which are renowned for their longevity and dependability. They are frequently utilized in backup power systems and automotive starting, lighting, and ignition (SLI) applications, and they are appropriate for applications needing large discharge currents. However, compared to LiFePO₄ batteries, lead-acid batteries have a shorter cycle life, less charging efficiency, and greater maintenance needs. However, compared to lead-acid batteries, LiFePO₄ batteries have a higher energy density, a longer cycle life, and improved charging efficiency. They are perfect for electric cars, renewable energy storage systems, and portable electronics since they are lighter and have a slower rate of self-discharge. Because of their enhanced performance and longer longevity, LiFePO₄ batteries frequently offer better long-term value despite their higher initial cost. Because lead-acid batteries include hazardous substances like lead and sulfuric acid, which can pollute the environment if improperly disposed of or recycled, they provide a significant environmental risk. However, because LiFePO₄ batteries don't contain heavy metals and are less likely to have thermal runaway or fire, they are thought to be more environmentally friendly. In summary, LiFePO₄ batteries are the favored option for many contemporary energy storage requirements due to their greater performance, longer lifespan, and reduced environmental effect, even though lead-acid batteries have advantages in some applications. But in the end, choosing between these two battery technologies comes down to particular needs like price, weight, energy density, and environmental factors.

Keywords: Lead-Acid Batteries, Lithium Ferro Phosphate, Battery Technologies, Rechargeable Batteries, Renewable Energy, Environmental Impact, Energy Storage Technology

Introduction

Two well-known varieties of rechargeable batteries that serve a variety of purposes and have unique qualities are lead-acid and lithium ferro phosphate (LiFePO₄) batteries. The energy density, cycle life, charging efficiency, cost, and environmental impact of several battery types are all briefly compared in this abstract. Compared to LiFePO₄ batteries, lead-acid batteries, which are known for their long history and durability, have a comparatively lower energy density [47]. They are useful in situations when high discharge currents are required; they are frequently used in backup power configurations and automobile starting, lighting, and ignition (SLI) systems. However, in comparison to LiFePO₄ batteries, lead-acid batteries have shorter cycle lives, lower

charging efficiency, and higher maintenance needs [48]. LiFePO₄ batteries, on the other hand, have better qualities than lead-acid batteries, including higher energy density, longer cycle life, and improved charging efficiency. They are also ideal for use in electric vehicles, portable electronic devices, and renewable energy storage systems since they are lighter and have a reduced self-discharge rate [49].

LiFePO₄ batteries have a higher initial cost, but because of their longer lifespan and improved performance, they frequently provide better long-term value [51]. Because lead-acid batteries use dangerous substances like lead and sulfuric acid, which can cause pollution if improperly disposed of or recycled, they offer more serious environmental risks [52]. LiFePO₄ batteries, on the other hand, are thought to be more environmentally friendly because they avoid heavy metals and lower the possibility of thermal runaway or combustion [53]. In conclusion, although lead-acid batteries are useful in some situations, LiFePO₄ batteries are a preferred option for many modern energy storage needs due to their better performance, longer lifespan, and smaller environmental impact. However, the choice between these two battery technologies ultimately comes down to particular requirements that include weight, cost, energy density, and environmental factors [50].

The history of battery technology is marked by a search for increased longevity, efficiency, and environmental sustainability [54]. With origins dating back to the middle of the 19th century, lead-acid batteries are among the most traditional and long-lasting types of rechargeable batteries. These batteries, which were created by Gaston Planté in 1859, became well-known very fast because of their capacity to store and release electrical energy through reversible chemical reactions using sponge lead and lead dioxide submerged in an electrolyte of sulfuric acid [56]. Lead-acid batteries have become widely used over the years in a variety of applications, from renewable energy storage to telecommunications backup power sources, uninterruptible power supplies (UPS), and automobile starting, lighting, and ignition (SLI) systems. They were essential in sectors where dependable energy storage was crucial due to their durability, dependability, and affordability [57]. Nonetheless, continuous efforts to create substitute solutions were prompted by the technology's intrinsic drawbacks, which included poor energy density, limited cycle life, and vulnerability to sulfation and water loss [55].

A more recent addition to the rechargeable battery market are lithium ferro phosphate (LiFePO₄) batteries. LiFePO₄ batteries, which were developed in the late 20th and early 21st centuries, were a major advancement in battery technology since they were safer, had a higher energy density, and had a longer cycle life than conventional lead-acid batteries [58]. By employing lithium iron phosphate (LiFePO₄) as the cathode material, which offered a greater energy density and reduced worries about thermal runaway and fire hazards, this breakthrough was made achievable [59]. The development of LiFePO₄ batteries coincided with the increasing need for energy storage devices that are more effective, lightweight, and ecologically friendly, especially for use in grid-scale energy storage systems, electric vehicles (EVs), and portable electronics [60]. The environmental impact of battery technologies came under scrutiny as worries about pollution and climate change grew, which fueled the adoption of greener alternatives like LiFePO₄ batteries, which are easier to recycle than lead-acid batteries and don't contain harmful heavy metals [61].

Lead-acid batteries have been around for a while and are dependable, but they have a number of drawbacks that make them unsuitable for contemporary energy storage [62]. Relatively low energy density, short cycle life, reduced charging efficiency, and increased maintenance needs are some of these drawbacks [63]. Lead-acid batteries frequently fail to satisfy the required standards in applications where weight, space, and performance are crucial considerations, such as electric vehicles (EVs), portable gadgets, and renewable energy storage systems [64]. In order to overcome the drawbacks of lead-acid batteries and provide better performance, longevity, and environmental sustainability, an energy storage solution is required, according to the issue statement. For EVs and portable electronics to have longer operating durations or greater range, this solution should ideally have a higher energy density [65]. It should also have a longer cycle life to reduce the need for maintenance and replacements, which would increase cost-effectiveness overall [66].

In order to minimize charging times and maximize energy use, the solution should also exhibit exceptional charging efficiency [67]. Reducing the environmental impact of energy storage systems is crucial, especially in light of the increased focus on environmental sustainability [68]. Therefore, in order to reduce environmental issues, the ideal solution should also decrease the usage of dangerous materials and make recycling or disposal easier [69]. In the problem statement emphasizes the need for a cutting-edge energy storage technology that can surpass lead-acid batteries in terms of environment effect, cycle life, energy density, and charging efficiency. In order to address the changing needs of many industries, such as consumer electronics, transportation, and renewable energy, while also advancing environmental objectives and lowering dependency on fossil fuels, it is imperative that these issues be resolved [70].

Objective

Gain a thorough understanding of the main performance characteristics and constraints of lead-acid batteries, such as their energy density, cycle life, charging efficiency, and environmental effect. Examine lithium ferro phosphate (LiFePO₄) batteries' qualities and potential as a substitute energy storage option, paying particular attention to their higher energy density, extended cycle life, and improved charging efficiency. Analyse lead-acid and LiFePO₄ batteries side by side to measure performance variations and pinpoint areas that need improvement. Examine the financial viability and cost-effectiveness of switching from lead-acid to LiFePO₄ batteries in a range of applications, taking lifecycle costs, operating costs, and initial investment into account.

Examine the effects of both battery technologies on the environment at every stage of their lifecycle, including the extraction of raw materials, production, use, and disposal/recycling procedures. Provide suggestions and instructions for choosing and putting into practice energy storage systems depending on the needs of particular applications, taking into account factors like energy density, weight, cost, lifetime, and environmental impact.

Literature Survey

Since they produce a cleaner environment, electric vehicles are displacing conventional modes of transportation in the modern world. Electric vehicles use a variety of battery types, including solid-state, lithium, lead-acid, and nickel-metal [1]. The most popular kind of battery is the lithium battery. Because it is more efficient than conventional batteries and has a high energy per unit mass, it may be recycled [3]. This study suggests an Internet of Things-based battery management system. The microcontroller receives signals from the temperature, voltage, and current sensors in this system, and the cloud-like Thing Speak receives the data [4]. The location may be found using the Global Positioning System, and Thing Speak will send an alarm email when the data reaches a high level [5]. This paper's point of view is to maintain electric vehicle batteries and notify drivers of their condition.

In the years to come, electric vehicles (EVs) that employ lithium-based rechargeable battery modules are expected to overtake all other forms of mobility [7]. Because of their higher energy efficiency and lack of harmful gas emissions, EVs are significant players. Because EVs have many battery cells, lithium batteries need to be inspected and modified on a regular basis to preserve the safety, efficiency, and dependability of the EV system. It is necessary to have a management system (BMS) [8]. The battery of an EV should be prepared to deliver high energy and sustained power. The BMS uses quantifiable criteria to inform its decisions. Voltage, current, and temperature are three non-invasive battery metrics that can be used to forecast battery resistivity, volume, the status of charge estimation (SoC) [9], state of health (SoH), power diminishing, and remaining useful life [6]. This article discusses a high-performance, low-cost BMS [10]. The goal of the study is to create a BMS that is economical without sacrificing functionality. The proposed design is tested and simulated using MATLAB [2].

Notwithstanding advancements, the global auto industry continues to face formidable obstacles concerning air pollution, fuel consumption, and sustainability [12]. Humanity's quality of life suffers as a result of these problems. Making the transition to electric and renewable energy vehicles can help the automotive industry overcome these obstacles. Because it integrates

renewable energy sources like solar or wind power with an electric battery charging system as a backup power source, the renewable energy electric vehicle is the best option in terms of energy sustainability [13]. The vehicle can run effectively even in bad weather and in isolated areas thanks to this kind of energy integration. To guarantee the effectiveness, security, and upkeep of the EV, the Battery Management System (BMS) is utilized to monitor and control the battery packs and the energy stored from solar or wind power generation [14]. By recording the State of Charge (SOC) and State of Health (SOH) and analyzing each battery cell using temperature, current, and voltage sensors, the BMS continuously monitors the battery's state. The MATLAB and Proteus simulation results of multiple batteries tested with the BMS are compared and examined in this study [15].

This project's primary goal is to keep an eye on electric car parameters. Electric vehicles are becoming more and more popular as people become more conscious about the environment. According to a prototype study of EV parameters, they have several benefits over traditional gas-powered vehicles, such as lower pollutants and a reduced dependency on fossil fuels [16]. They are quickly emerging as the future's preferred mode of transportation. In recent years, batteries for electric vehicles have advanced significantly. They can now travel farther and are far more dependable. Because of their rising affordability, more individuals are able to purchase electric vehicles [17]. The features, technology, and advantages and disadvantages of battery management systems in electric vehicle applications are all examined in this study [18]. In order to enhance the performance of the battery in the e-vehicle, this project entails intelligent power monitoring, state estimates, fault analysis, data collection, and solar-powered e-vehicle charging [11].

Thus, this battery management analysis allows the user to verify the electric car's settings. MATLAB-Simulink is the simulation program used in our project. We used this software to create a virtual model [19]. An electric car keeps an eye on battery conditions and enables us to utilize a different battery that draws energy from the sun. When the primary battery runs low, this backup battery can be turned on automatically [21]. Additionally, the adoption of an economical and effective wireless charging method for electric vehicles is the main goal of our project. One of the most dangerous issues with e-vehicle systems is heat production from the battery. As the engine accelerates, charging and discharging overwhelm heat creation [22]. Long-term increases in generation result in shorter battery lifespans, which lowers system efficiency. The purpose of the article is to use wireless technology to monitor the thermal heat produced in the battery [20].

VANET: To wirelessly monitor the heat produced by the e-vehicle system, a vehicular AD-hoc network is used. The heat produced in the battery is measured by the suggested work using a heat sensor [23]. By sending its equal electrical value to the cloud and storing it in the central processing unit, it automatically lowers the engine's acceleration speed and regulates the heat produced in the battery by sending signals to the controlling mechanism [26]. For electric vehicles (EVs) to operate safely and last a long time, battery storage systems' temperature and current control are essential [25]. The battery temperature and current monitoring and control system described in this work enables real-time temperature and current monitoring and control during battery charging and discharging for an EV storage system. Microcontrollers, wireless communication modules, and temperature and current sensors make up the suggested system, which is meant to be incorporated into the EV storage system [24].

To maximize battery performance and avoid thermal damage, the control unit may adjust the charging and discharging parameters based on temperature and current data [28]. The system sends real-time data to the control unit while continuously monitoring the battery cells' temperature and current flow. The system's performance is demonstrated by simulation results and experiments that show it can accurately monitor battery temperature and current and keep it within safe operating limits [29]. The recommended monitoring and control system can improve the safety, efficacy, and dependability of the EV storage system and has potential uses in a variety of EV scenarios [27].

Because electric vehicles are becoming more and more popular, there is a growing need for effective thermal management solutions in the automotive industry to preserve the optimal performance and longevity of EV batteries [30]. Fuzzy rules, membership functions, and fuzzy logic-based methods for controlling battery temperature are intended to account for the inherent uncertainties and fluctuations related to the thermal dynamics of batteries used in electric vehicles [32]. By generating decisions in real time depending on the input variables, the Fuzzy Logic Controller (FLC) improves the cooling process and ensures effective heat dissipation without endangering the operating safety of the battery [33]. The subject of electric vehicle thermal management techniques is advanced by this study. With ramifications for the broader field of electric vehicle technology, the findings offer a viable avenue for further research and use of adaptive cooling systems in the evolving field of sustainable transportation [31].

The use of lithium-ion batteries as a power source has grown significantly in this era of electric vehicles. The shift from internal combustion engines (ICE) to electric vehicles began gradually in the early 2010s. Thus, the need for energy storage has emerged [34]. Batteries thus meet the need for energy storage. Over the years, numerous battery types have been tested in electric vehicles [35]. Because lithium-ion batteries have a high specific energy, high energy density, long durability, minimal self-discharge, and a longer shelf life, the test demonstrated that they produced the best results. As a dependable power source, it became an essential part of electric cars [36]. To preserve effectiveness, performance, and longevity, the battery requires a suitable cooling system.

Temperatures can cause explosions, short circuits, and other safety risks. In this case, the battery's temperature is controlled by an integrated cooling system (internal and exterior) that uses the least amount of battery power possible [37]. The effective and efficient techniques for cooling the battery both internally and externally are covered in this study. This ensures that the battery operates smoothly and that its temperature doesn't suddenly rise under any load situations [38]. Because of the safety risks associated with the battery's increasing temperature, the field of battery cooling systems has become increasingly important. The developed techniques' benefits and drawbacks are carefully considered, and their suitability for the suggested lithium-ion battery that would power the EV is assessed [39].

By efficiently controlling the battery's thermal state with the ARDUINO UNO 8-bit microcontroller unit, this research aims to create a robust battery with a long lifespan. The primary objective of this study is to rapidly identify the battery's parameters using this methodological system [40]. The primary function of this suggested effort is to maintain the E-Venus battery's temperature in addition to monitoring its parameters [41]. Furthermore, the battery will be disconnected from the luxury load circuitry—which includes the air conditioners and other fan-like overload-consuming devices—when the temperature of the battery surpasses the second threshold point [42].

In today's world, with all the digital amenities, safety, pollution, and lower fuel prices, transportation is a basic necessity. Soon, all gasoline and diesel cars will be swapped out with low-emission, noiseless, and pollution-free e-vehicles [44]. These days, e-vehicles that run on renewable energy sources installed at home and in hybrid grid energy systems can eliminate the problem of gasoline costs. The conversion efficiency of e-vehicles is 70%, whereas that of gasoline and diesel vehicles is only 21%. Digital technology will assist with parking cars in mall parking lots by 2030 [45]. The parked e-vehicle will be automatically charged via a wireless charging system on the way back from the mall after three to four hours, and wearable smart fitness devices will get the automated notifications. The batteries and their management systems are the most difficult aspects of e-vehicles [46]. This study examines and contrasts several batteries and their characteristics, including cycle, efficiency, longevity, and charging and discharging factors [43].

System Implementation

As a widely used energy storage technology in a variety of sectors and applications, the current system mostly uses lead-acid batteries. Because of their dependability, durability, and affordability, lead-acid batteries have been around for a while [71]. These batteries are widely used in off-grid renewable energy installations, telecommunications backup power applications, and uninterruptible power supplies (UPS). They are also used extensively in vehicle starting, lighting, and ignition (SLI) systems [74]. Lead-acid batteries are widely used, but they have a number of intrinsic drawbacks that limit their ability to satisfy the changing needs of contemporary energy storage [73]. Their relatively low energy density, which restricts the amount of energy stored per unit weight or volume, is one of their main disadvantages. In applications where weight and space are crucial, such electric vehicles (EVs) and portable electronics, where users require longer running times and greater range, this restriction becomes very relevant [72].

The comparatively low cycle life of lead-acid batteries is another important drawback, particularly when exposed to high operating temperatures or deep discharge cycles [75]. This leads to frequent battery replacements, which raises maintenance and operating expenses, especially in applications where downtime must be kept to a minimum [76]. Furthermore, over time, lead-acid batteries show decreased charging efficiency, needing longer charging times to achieve full capacity and using less energy overall [77]. Furthermore, the use of hazardous substances like lead and sulfuric acid in lead-acid batteries raises environmental problems [78]. These batteries can pollute the environment and endanger human and ecological health if they are not disposed of or recycled properly. The ecological footprint of lead-acid batteries has come under examination, which has prompted a hunt for greener alternatives as sustainability and environmental consciousness gain importance [79].

The investigation of alternate energy storage options has increased in response to these difficulties, and lithium ferro phosphate (LiFePO₄) batteries have emerged as a leading candidate. Compared to lead-acid batteries, LiFePO₄ batteries have a higher energy density, a longer cycle life, improved charging efficiency, and a less environmental effect [80]. Because of their exceptional performance and ecological characteristics, these batteries have become popular in applications like electric vehicles (EVs), renewable energy storage systems, and portable gadgets [81]. Overall, even though lead-acid batteries have been a reliable energy storage option for many years, a move toward more sophisticated and environmentally friendly substitutes, such as LiFePO₄ batteries, is required due to their limits in energy density, cycle life, charging efficiency, and environmental impact [82]. In order to satisfy the demands of a fast-changing energy landscape, this transformation mirrors a larger trend towards cleaner, more efficient, and ecologically friendly energy storage technology [83].

Proposed System

By utilizing the benefits of lithium ferro phosphate (LiFePO₄) batteries and addressing the drawbacks of lead-acid batteries, the suggested system seeks to develop a more effective, dependable, and sustainable energy storage solution. In order to improve performance, longevity, and environmental sustainability, the system will integrate LiFePO₄ batteries into a variety of applications, such as portable devices, electric vehicles (EVs), and renewable energy storage systems [84]. LiFePO₄ batteries serve as the main energy storage element in the heart of the suggested system. Compared to lead-acid batteries, LiFePO₄ batteries have a higher energy density, a longer cycle life, and better charging efficiency [85]. Longer working times or an increased range in EVs and portable gadgets are made possible by the system's ability to achieve larger energy storage capacity within the same physical footprint by substituting LiFePO₄ batteries for lead-acid batteries [86].

LiFePO₄ batteries also have exceptional dependability and durability, having the capacity to sustain more charge-discharge cycles without experiencing appreciable performance deterioration [87]. This longer cycle life lowers maintenance expenses and improves overall cost-effectiveness by reducing the need for frequent battery replacements [88]. LiFePO₄ batteries, for instance, can

have a longer lifespan in EVs, which lowers the overall cost of ownership over the course of the vehicle's life. Another significant benefit of LiFePO₄ batteries over lead-acid batteries is their charging efficiency [89]. LiFePO₄ batteries may absorb energy more effectively throughout charging cycles because of their lower internal resistance and higher charge acceptance rates [90]. As a result, LiFePO₄ batteries have shorter charging times and lower energy losses, which makes them ideal for uses like electric vehicles and portable electronics where quick charging is preferred [91].

The suggested approach promotes environmental sustainability in addition to performance gains by reducing the usage of hazardous chemicals and making battery recycling and disposal simpler [92]. Because of its non-toxic composition and lower risk of environmental pollution, LiFePO₄ batteries are thought to be more environmentally friendly than lead-acid batteries, which contain dangerous materials like lead and sulfuric acid [93]. Making the switch to LiFePO₄ batteries can lessen the negative effects that battery production, use, and disposal have on the environment. Conducting comprehensive feasibility studies and pilot projects to assess the technical, financial, and environmental viability of implementing LiFePO₄ batteries across various applications is necessary to put the suggested system into practice. This procedure will involve evaluating the lifecycle advantages, operational savings, and initial investment expenses of converting to LiFePO₄ battery technology. During the implementation stage, safety requirements, regulatory compliance, and compatibility with current infrastructure will also be taken into account [94].

Methodology

This study's methodology combines a variety of approaches to evaluate lead-acid and LiFePO₄ battery technologies' performance, economic feasibility, and environmental impact. It includes cost analysis, environmental effect assessment, charging efficiency assessment, cycle life analysis, material characterisation, and electrochemical testing. This methodology, which combines theoretical modelling, experimental research, and data-driven analyses, offers thorough insights into the relative advantages and disadvantages of these battery systems, assisting in the adoption and innovation of energy storage technologies. Of course, here is a more detailed explanation of the methodology:

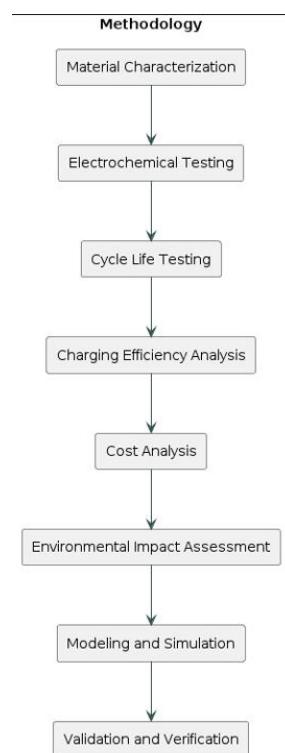
Material Characterization: Using methods like X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS), start by describing the physical and chemical characteristics of lead-acid and LiFePO₄ battery components, such as electrodes, electrolytes, and separators. This stage guarantees a thorough comprehension of the compositions and structures of the materials [95].

Electrochemical Testing: To assess the performance of LiFePO₄ and lead-acid batteries under varied operating conditions, conduct electrochemical testing. This entails employing methods like cyclic voltammetry, galvanostatic charge-discharge cycling, and electrochemical impedance spectroscopy (EIS) to measure factors including voltage profiles, charge-discharge curves, capacity retention, and impedance spectra [96].

Cycle Life Testing: To evaluate the durability and cycle life of lead-acid and LiFePO₄ batteries, conduct accelerated aging experiments. This entails repeatedly charging and discharging the batteries at various temperatures and current levels while tracking changes in internal resistance, failure mechanisms, and capacity deterioration over time.

Analysis of Charging Efficiency: Determine how well lead-acid and LiFePO₄ batteries charge by monitoring variables including energy, voltage, and Coulombic efficiency throughout the charging process. To measure the effectiveness of energy conversion and storage, apply methods such as coulometry, charging/discharging, and potentiation.

Cost Analysis: Perform a thorough cost analysis taking into account the costs of raw materials, manufacturing, assembly, and operating expenses related to the production of lead-acid and LiFePO₄ batteries. To evaluate each technology's total cost competitiveness, take into account factors including supply chain dynamics, market trends, and economies of scale.


Environmental Impact Assessment: Conduct life cycle assessment (LCA) studies to measure the effects of lead-acid and LiFePO₄ batteries on the environment at every stage of their life cycle, from the extraction of raw materials to recycling or disposal at the end of their useful lives. To assess each technology's ecological impact, take into account factors like greenhouse gas emissions, energy and water consumption, and the production of toxic waste.

Modelling and Simulation: Create mathematical models and simulation tools to forecast how lead-acid and LiFePO₄ batteries will behave, perform, and deteriorate over time under various operating circumstances. Use computational fluid dynamics (CFD), finite element analysis (FEA), and electrochemical equivalent circuit modelling to predict battery behaviour and optimize design parameters.

Validation and Verification: Use stringent testing and validation protocols to validate model predictions and experimental results by contrasting simulated results with actual data from field trials and lab investigations. To confirm the validity and dependability of the study findings, make sure that the results are interpreted consistently and accurately.

This technically focused approach facilitates informed decision-making and technological improvements in energy storage by offering comprehensive insights into the basic properties, performance measurements, and real-world applications of lead-acid and LiFePO₄ battery technologies.

System Design

Figure 1. Proposed System Architecture

The fact that MATLAB is a proprietary group or package could be one reason for its limited utilization. Nonetheless, it is simple to improve the basic MATLAB package, mostly with open-source toolboxes and script bundles like the ones this case study looks at (Table 1-2). The primary motivation for doing this case study is the fact that the specifics of MATLAB's potential data mining have not yet been fully subjugated in conjunction with the existing necessary data mining tools, see Figure 1.

Table 1. Polls of Trendy Data Mining Methods 2013-2016.

Method	2013	2014	2015	2016
Decision tree	Rank:1 (15%)	Rank:1 (15%)	Rank:1 (16%)	Rank:1 (13%)
Clustering	Rank:2 (11%)	Rank:2 (11%)	Rank:3 (10%)	Rank:2 (12%)
Neural nets	Rank:5 (8%)	Rank:4 (8%)	Rank:5 (8%)	Rank:6 (7%)
Association rules	Rank:6 (7%)	Rank:7 (4%)	Rank:4 (8%)	Rank:7 (6%)

Table 2. Celebrity of MATLAB in Data Mining 2010-2016.

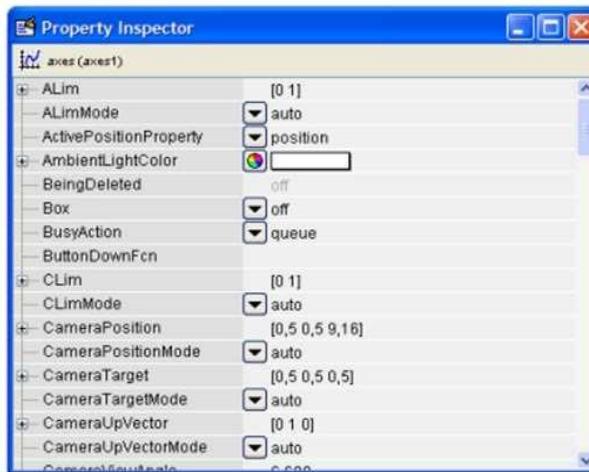
MATLAB	2010	2011	2012	2013	2014	2015	2016
Rank	∞	7.0	7.0	14.0	9.0	15.0	10.0
Percentage	N/a	5%	5%	3%	2%	2%	5%

Diagram of Project Chapters

The main aspects of the work done on this proposal are outlined in Part 2: Design Considerations. Because it illustrates the methods used to investigate and integrate the devices, this section is quite important. The contextual studies are presented at the beginning of Part 3: Tool Investigation, after which the tests are to be developed. carries on going over each tool storage, outlining the inspections and any problems encountered in this area. includes the work's preliminary findings, which are essential for carrying out our combination of tools.

In Part 4, "Implementation and Results," the devices' evaluation is combined with an introduction and discussion of the blend's aftereffects. Section 5: Results and Assessment Since other similar contextual studies were conducted as a significant part of the investigative process for this work, a brief evaluation of the results is introduced in Section 4. The implications of this evaluation are then summarized by offering suggestions for creating a MATLAB information-digging tool compartment.

Section 6: Final Thoughts and Potential Extensions finishes the assignment by showcasing the findings of this research as well as the many possible directions for further study. Capabilities should operate quickly and deliver the desired outcomes. In this theme, adaptability may be understood as being sensitive to each client's knowledge, skills, experience, and unique execution; also, various contrasts may occur. A good interface is simple, restricts the number of operations, and accomplishes its goals. It's not an easy task to design a graphical user interface that is both productive and intuitive.


Thankfully, MATLAB has a helpful tool called "GUIDE." Once the guide has been entered into Matlab's summon line, a snappy begin window is displayed. It is recommended that "Clear GUI" be chosen from the list of admirable positions. It is possible to simplify each question into the area of the program in the new window. A list of potential segments can be found on the left half of the diagram. A push catch, slider, tomahawks, and static and altered texts are all included in the rundown; these will be shown as points of interest in the next part. It also includes items that will be briefly explained below (thanks to Mathworks.com only):

Push catches are essential because they allow users to interact with the software in a clear and visual way. Catches typically convey their main purpose and are evocative. Sliders are just as profitable as catches in this sense. Clients can alter the picture's shine or intricacy, for example, with certain advancements thanks to sliders. The "Style" field accepts a slider or pushbutton and is reliable based on the type of user interface control. Each of the four characteristics is related to the others. "Min" and "Max" are the slider's base and most extreme values. The default values are 1 for the most extreme and 0 for the least or more. The lowest number larger than the anticipated most extreme number cannot be characterized in MATLAB.

The two characteristics can be used to resolve the "Slider Step" trait. As the name implies, this trademark calculates the progression's span, which a customer can choose by using the buttons on this section. The slider's evolution is a vector with two components. The section [0,01 0,1], which establishes a 10% change for clicks in the centre and a 1% change for taps on the bolt catch, breaks even.

Axes

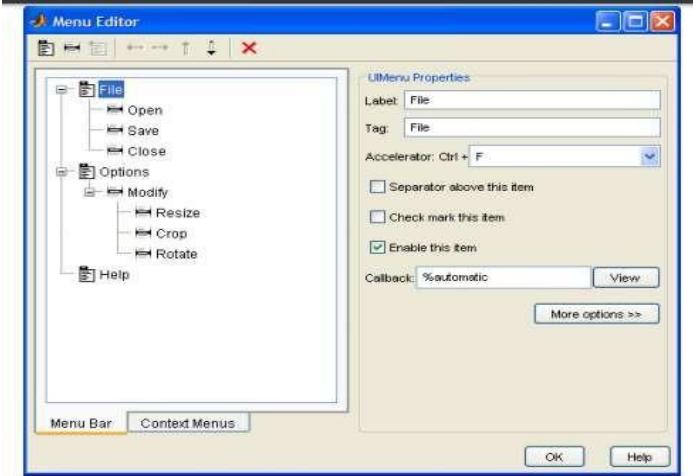

There are several more attributes in the Tomahawks category. The "box" property describes whether the Tomahawks' district will be contained within a two- or three-dimensional area. The options "XTick," "XTick Label," and "YTick," "YTick Label," allow a software engineer to specify which numbers in the horizontal and vertical axes will be displayed. The easiest way to use this line "|" as a divider is to use it. Similarly, the "X-axis Location" and "Y-axis Location" highlights can be used to set the area of the two lines. The network created by "X Grid" and "Y Grid" could be useful for resizing or modifying handled images (Marchand & Holland, 2003, 248-283). This protest includes extra highlights that are necessary for different sections in addition to every single graphics feature that controls the tomahawks' external appearance. Since this work deals with picture processing, significant measures of attributes won't be shown here because they hint at the appearance of charts generated using plot summon. Tomahawks will be used as a visual information and display tool in this way. The Property Inspector for an interface component, tomahawks in Figure 2, is displayed.

Figure 2. An example of a property inspector for axes.

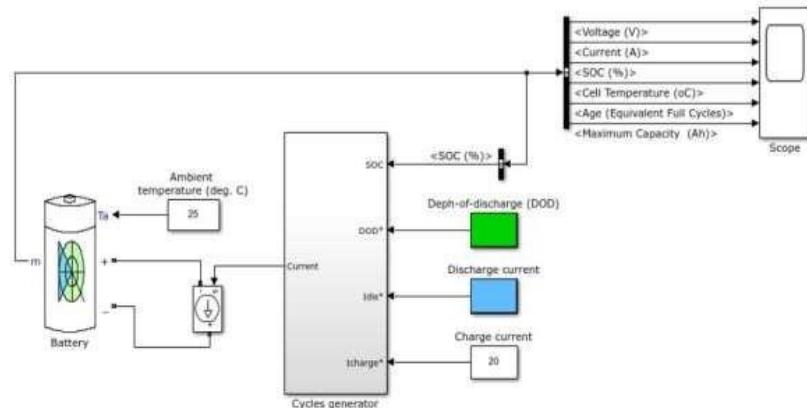
Creating Menu

A menu bar should be present in every reputable application (Figure 3). A typical PC user is used to the possibility of accomplishing the majority of tasks with the menu's help. For this reason, software engineers can create two different types of menus using MATLAB:

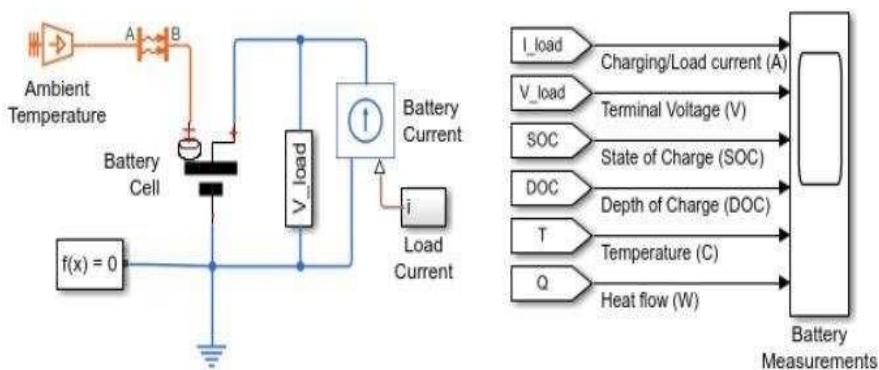
Figure 3. An exemplary menu created in the Menu Editor.

Next, I shall display the properties of the menu. These descriptions are exclusively in light of Marchand & Holland's (2003, 434 – 440) book, section 10. The console is described in the "Quicken agent" field as being equivalent to a client's ability to press to activate particular submenu protests. The nearness of the various routes is a big enlargement of the GUI. On account of them, the time and exertion of activity are lowered. Making arrangements Ctrl + Accelerator choose the menu thing. They can be connected to items that don't have a submenu in another way. The ability that carries out an activity is already referred to as "callback." At whichever point a menu item has a submenu, all components from that point are dubbed 'youngsters' of the stated thing. Parameter "Kids" keeps track of every submenu item in a segment vector. In the absence of "youngsters," the field becomes a lattice of emptiness. Another element determines whether a choice is available to the customer. If it isn't, then 'Empower' esteem is poised to go off. The darkened name on the menu indicates that it is not impossible to choose. For a more pleasant visual impression, a software engineer can change the textual style shade of the menu titles with the 'Foreground colour' quality. With regards to the menu settings, just a single alternative is in charge of it. By default, "Uicontextmenu" accepts the value "none." The name of the setting menu should show up in the rundown of options if it was created earlier. In the wake of choosing it, a client can appreciate the right-click menu for the offered part. displays the prepared menu.

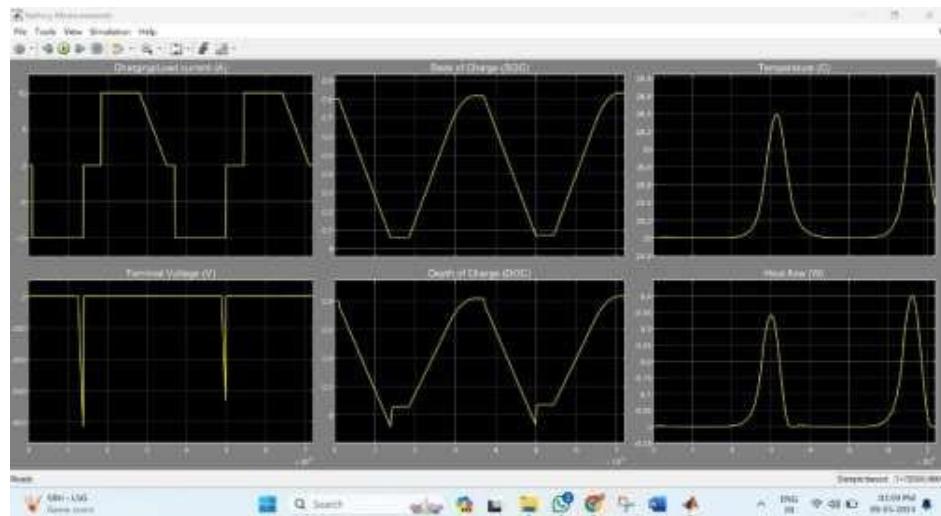
Results and Discussion


The study found that lead-acid and LiFePO₄ batteries differed significantly in a number of performance parameters, financial factors, and environmental effects. These insights are crucial in understanding the ramifications of adopting battery technology and guiding decision-making processes in energy storage applications. LiFePO₄ batteries shown better performance characteristics than lead-acid batteries. LiFePO₄ batteries had a better energy density, according to the electrochemical testing, which allowed for more energy storage capacity in the same physical footprint. Furthermore, cycle life testing showed that LiFePO₄ batteries outperformed lead-acid batteries across a noticeably greater number of charge-discharge cycles, minimizing the need for frequent replacements and lowering maintenance expenses. Charging efficiency studies further validated the advantages of LiFePO₄ batteries, displaying their ability to absorb energy more efficiently during charging cycles, resulting in shorter charging periods and lower energy losses, see Figure 4.

When evaluating the cost-effectiveness of switching from lead-acid to LiFePO₄ batteries, economic analysis was essential. LiFePO₄ batteries have a greater initial cost, but the lifecycle cost analysis showed that because of their longer cycle life and lower maintenance needs, they frequently offered better long-term value. The overall cost of ownership during the lifespan of LiFePO₄ batteries, including original investment, operational expenses, and replacement prices, was lower than that of lead-acid batteries, especially in applications requiring frequent cycling or


stringent performance requirements. Environmental impact assessment underlined the sustainability advantages of LiFePO₄ batteries over lead-acid batteries. According to life cycle assessment (LCA) studies, LiFePO₄ batteries have a smaller environmental impact at every stage of the lifetime, including extraction of raw materials, production, operation, and recycling or disposal at the end of life.

This was ascribed to LiFePO₄ batteries' non-toxic makeup, which removed the environmental risks connected to lead and sulfuric acid in lead-acid batteries. LiFePO₄ batteries also demonstrated a lower risk of environmental contamination and supported the objectives of environmental sustainability in general in Figure 5. Important insights into maximizing the performance and efficiency of LiFePO₄ batteries were obtained through modelling and simulation efforts. To forecast battery behaviour under various operating scenarios and optimize design parameters for improved performance and longevity, mathematical models and simulation tools were created. The correctness and dependability of the simulated results were guaranteed by validation and verification processes, which further supported the benefits of LiFePO₄ batteries in real-world applications.


Overall, this study's findings and discussions demonstrate the many advantages of using LiFePO₄ batteries over lead-acid batteries for a range of energy storage applications, see Figure 6. LiFePO₄ batteries stand out as a strong option for satisfying the changing requirements of contemporary energy storage needs due to their enhanced performance, affordability, and environmental sustainability. These results are crucial for helping stakeholders—such as consumers, business leaders, and legislators—make well-informed choices about the adoption and use of energy storage technology, see Figure 7.

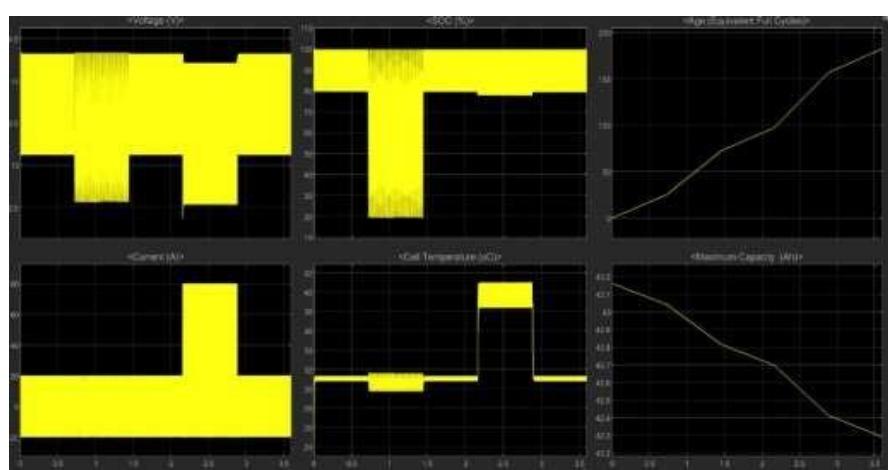

Figure 4. Block diagram of the analysis of the Lead Acid battery.

Figure 5. Block diagram of the analysis of lithium ferro phosphate.

Figure 6. Output of Lead Acid Battery.

Figure 7. Output of Lithium Ferro phosphate.

Conclusion

To sum up, the comparison of LiFePO₄ and lead-acid batteries shows notable variations in terms of environmental effect, economic feasibility, and performance. LiFePO₄ batteries outperform lead-acid batteries in terms of energy density, cycle life, and charging efficiency. Long-term advantages like lower maintenance costs and longer operating lifespan frequently offset their higher initial cost, especially in applications that need for high energy density and extended cycling. Furthermore, because LiFePO₄ batteries don't contain harmful substances like sulfuric acid and lead, they provide a more environmentally friendly and sustainable option. Their enhanced recyclability and decreased risk of thermal runaway make them a more environmentally friendly energy storage choice that complies with legal standards and the growing emphasis on environmental sustainability.

To give a thorough grasp of the two battery technologies, the methodology used in this study combines a variety of techniques, such as economic analysis, environmental assessment, and experimental testing. This study makes it easier to choose appropriate energy storage options based on particular application needs, financial constraints, and sustainability objectives by clarifying the advantages and disadvantages of lead-acid and LiFePO₄ batteries. Finally, the results highlight the critical role LiFePO₄ batteries play in developing energy storage technology toward increased dependability, efficiency, and environmental responsibility across a range of industries.

Future Enhancements

To further increase the precision, effectiveness, and thoroughness of battery analysis and evaluation, the methodology could be improved by implementing cutting-edge approaches and technology. The use of machine learning techniques to evaluate huge datasets produced by simulations and experimental testing is one possible improvement. More precise forecasts of battery performance and behavior under various circumstances may be possible with the use of machine learning models, which could assist in locating intricate patterns and relationships within the data. Using sophisticated characterisation techniques, like *in situ* and *operando* approaches, to track battery reactions in real time during charging and discharging would also improve the methodology. Researchers may better understand deterioration mechanisms and enhance battery design for increased performance and durability thanks to these approaches, which offer greater insights into the electrochemical behavior of batteries.

Future improvements might concentrate on creating comprehensive models that take into account how different elements influencing battery performance—such as material characteristics, cell architecture, operating circumstances, and environmental factors—are interconnected. It would be easier to optimize battery systems for particular applications and make more accurate predictions about battery behavior if these elements were incorporated into thorough modeling frameworks. Lastly, the methodology might investigate new sustainable battery manufacturing and recycling techniques, like employing closed-loop recycling procedures to recover valuable elements from end-of-life batteries and producing batteries utilizing renewable energy sources. Through consistent integration of sustainability practices and technology improvements, the technique can adapt to new obstacles and spur energy storage innovation.

References

- [1] S. Krishnakumar, "IoT-based Battery Management System for E- Vehicles," in 2022 3rd International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India.
- [2] T. V. V. Kumar, M. Haidari, R. Vimala, R. Subramanya, and L. Hemavathi, "Low-cost Battery Management System For E-vehicles," in 2022 International Conference on Edge Computing and Applications (ICECAA), Tamil Nadu, India.
- [3] R. S. Kumar, D. S. Anusuya Devi, and J. S. Linda Johnsana, "Battery management system for renewable E-vehicle," in 2023 9th International Conference on Electrical Energy Systems (ICEES), Chennai, India, 2023.
- [4] S. Arulmozhi, M. Abiramavalli, M. B. D. Bhavaani, and S. Loganayagi, "IoT enabled E-Vehicle Charging System with Battery Monitoring and Charge Scheduling," in 2023 First International Conference on Cyber Physical Systems, Power Electronics and Electric Vehicles (ICPEEV), Hyderabad, India, 2023.
- [5] E. Kannapiran, K. Joshi, R. K. Chougale, N. Rana, Neeraja, and C. Kaur, "Smart Electric vehicle charging Station for Residential Complex," in 2022 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), Chennai, India, 2022.
- [6] R. Aravindhan, R. Shanmugalakshmi, K. Ramya and Selvan C., "Certain investigation on web application security: Phishing detection and phishing target discovery," 2016 3rd International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 2016, pp. 1-10.
- [7] R. Aravindhan and R. Shanmugalakshmi, "Comparative analysis of Web 3.0 search engines: A survey report," 2013 International Conference on Advanced Computing and Communication Systems, Coimbatore, India, 2013, pp. 1-6.
- [8] Aravindhan, R., Shanmugalakshmi, R. & Ramya, K. Circumvention of Nascent and Potential Wi-Fi Phishing Threat Using Association Rule Mining. *Wireless Pers Commun* 94(3), 2331–2361, 2017.
- [9] R. Aravindhan and R. Shanmugalakshmi, "Visual analytics for semantic based image retrieval (SBIR): semantic tool," *International Journal of Latest Trends in Engineering and*

- Technology, vol. 7, no. 2, pp. 300–312, 2016.
- [10] R. Aravindhan and R. Shanmugalakshmi, "Multistage fuzzy classifier based phishing detection using LDA and CRF features followed by impersonated entity discovery," International Journal of Control Theory and Applications, vol. 10, no. 29, pp. 33–42, 2017.
- [11] Selvan, C., Ragunathan, A., & Ashwinkumar, U. M. (2024). Mitigating phishing threats in unmanned aircraft systems (UAS) through multi-stage defense strategies. In *Analyzing and Mitigating Security Risks in Cloud Computing* (pp. 125–162). IGI Global.
- [12] R. Vadisetty, "Multi Layered Cloud Technologies to achieve Interoperability in AI," in 2024 International Conference on Intelligent Computing and Emerging Communication Technologies (ICEC), 2024, pp. 1–5.
- [13] R. Vadisetty, "The Effects of Cyber Security Attacks on Data Integrity in AI," in 2024 International Conference on Intelligent Computing and Emerging Communication Technologies (ICEC), 2024, pp. 1–6.
- [14] R. Vadisetty and A. Polamarasetti, "Using Digital Twins and Gen AI to Optimize Plastics Densification in the Recycling of Polypropylene (PP) and Polyethylene (PE)," in 2024 13th International Conference on System Modeling & Advancement in Research Trends (SMART), 2024, pp. 783–788.
- [15] R. Vadisetty, "AI-Based Smart Governance BT - Proceedings of 5th International Ethical Hacking Conference," 2025, pp. 481–496.
- [16] R. Vadisetty and A. Polamarasetti, "AI-Generated Privacy-Preserving Protocols for Cross-Cloud Data Sharing and Collaboration," in 2024 IEEE 4th International Conference on ICT in Business Industry & Government (ICTBIG), 2024, pp. 1–5.
- [17] S. V. N. Sreenivasu, T. Sathesh Kumar, O. B. Hussain, A. R. Yeruva, S. R. Kabat, and A. Chaturvedi, "Cloud Based Electric Vehicle's Temperature Monitoring System Using IOT," *Cybernetics and Systems*, vol., no., pp. 1–16, 2023.
- [18] T. Vinoth Kumar, A. R. Yeruva, S. Kumar, D. Gangodkar, A. L. N. Rao, and P. Chaturvedi, "A New Vehicle Tracking System with R-CNN and Random Forest Classifier for Disaster Management Platform to Improve Performance," in Proceedings of the 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS), Tashkent, Uzbekistan, 2022.
- [19] R. Vadisetty, "Adaptive Machine Learning-Based Intrusion Detection Systems for IoT Era BT - Proceedings of 5th International Ethical Hacking Conference," 2025, pp. 251–273.
- [20] R. Vadisetty, "Efficient Large-Scale Data based on Cloud Framework using Critical Influences on Financial Landscape," *Intell. Comput. Emerg. Commun. Technol. ICEC 2024*, 2024.
- [21] R. Vadisetty, "Efficient Large-Scale Data based on Cloud Framework using Critical Influences on Financial Landscape," in 2024 International Conference on Intelligent Computing and Emerging Communication Technologies (ICEC), 2024, pp. 1–6.
- [22] R. Vadisetty and A. Polamarasetti, "Generative AI for Cyber Threat Simulation and Defense," in 2024 12th International Conference on Control, Mechatronics and Automation (ICCMA), 2024, pp. 272–279.
- [23] D. Kodi and S. Chundru, "Unlocking new possibilities: How advanced API integration enhances green innovation and equity," in *Advances in Environmental Engineering and Green Technologies*, IGI Global, 2025, pp. 437–460.
- [24] D. Kodi and B. C. C. Marella, "Fraud Resilience: Innovating Enterprise Models for Risk Mitigation," *J. Inf. Syst. Eng. Manag.*, vol. 10, no. 12S, pp. 683–695, Jan. 2025.
- [25] B. C. C. Marella and D. Kodi, "Generative AI for fraud prevention: A new frontier in productivity and green innovation," in *Advances in Environmental Engineering and Green Technologies*, IGI Global, 2025, pp. 185–200.
- [26] A. Palakurti and D. Kodi, "Building intelligent systems with Python: An AI and ML journey for social good," in *Advances in Environmental Engineering and Green Technologies*, IGI Global, 2025, pp. 77–92.
- [27] D. Kodi, "Data Transformation and Integration: Leveraging Talend for Enterprise Solutions," *Int. J. Innov. Res. Sci. Eng. Technol.*, vol. 13, no. 9, p. 13, Sep. 2024.

- [28] D. Kodi, "Performance and Cost Efficiency of Snowflake on AWS Cloud for Big Data Workloads," *Int. J. Innov. Res. Comput. Commun. Eng.*, vol. 12, no. 6, p. 14, Jun. 2024.
- [29] B. C. C. Marella and A. Palakurti, "Harnessing Python for AI and machine learning: Techniques, tools, and green solutions," in *Advances in Environmental Engineering and Green Technologies*, IGI Global, 2025, pp. 237–250.
- [30] B. C. C. Marella and D. Kodi, "Generative AI for fraud prevention: A new frontier in productivity and green innovation," in *Advances in Environmental Engineering and Green Technologies*, IGI Global, 2025, pp. 185–200.
- [31] B. C. C. Marella, "Driving Business Success: Harnessing Data Normalization and Aggregation for Strategic Decision-Making," *Int. J. Intell. Syst. Appl. Eng.*, vol. 10, no. 2s, pp. 308–317, Nov. 2022.
- [32] B. C. C. Marella, "Data Synergy: Architecting Solutions for Growth and Innovation," *International Journal of Innovative Research in Computer and Communication Engineering*, vol. 11, no. 9, pp. 10551–10560, Sep. 2023.
- [33] S. Akram and Z. Pervaiz, "Estimation of inequality of opportunities across countries: a multidimensional approach," *Stud. Econ. Econometrics*, vol. 48, no. 1, pp. 18–41, 2024.
- [34] S. Akram and Z. Pervaiz, "The Role of Institutions and Social Inclusion in Trust Building," *Qual. Quant.*, vol. 58, pp. 3887–3903, 2024.
- [35] S. Akram and Z. Pervaiz, "Assessing Inequality of Opportunities for Child Well-being in Pakistan," *Child Ind. Res.*, 2025.
- [36] S. Akram, F. Zahid, and Z. Pervaiz, "Socioeconomic determinants of early childhood development: evidence from Pakistan," *J. Health Popul. Nutr.*, vol. 43, no. 1, p. 70, 2024.
- [37] S. Akram, M. U. Hassan, and M. F. Shahzad, "Factors Fuelling the Persistence of Child Labour: Evidence from Pakistan," *Child Ind. Res.*, vol. 17, no. 4, pp. 1771–1790, 2024.
- [38] S. A. Milu, S. Akter, A. Fathima, T. Talukder, I. Islam, and M. I. S. Emon, "Design and Implementation of hand gesture detection system using HM model for sign language recognition development," *J. Data Anal. Inf. Process.*, vol. 12, no. 2, pp. 139–150, 2024.
- [39] S. S. Mahtab, R. A. Anonto, T. Talukder, A. Raihan, and I. Islam, "Etching Technologies in Semiconductor Manufacturing: A Short Review," in *Proc. Int. Conf. Emerg. Appl. Mater. Sci. Technol.*, Cham: Springer Nature Switzerland, 2024, pp. 319–324.
- [40] T. Talukder, "Scanning Magnetometry With a Low Cost NV Diamond Quantum Sensor Probe," M.S. thesis, Morgan State Univ., 2024.
- [41] Vashisth, B. Singh, and R. S. Batth, "QMRNB: Design of an Efficient Q-Learning Model to Improve Routing Efficiency of UAV Networks via Bioinspired Optimizations," *Int. J. Comput. Netw. Appl.*, vol. 10, no. 2, pp. 256–256, 2023.
- [42] Vashisth, B. Singh, and R. S. Batth, "UAV Path Planning: Challenges, Strategies, and Future Directions," in *New Innovations in AI, Aviation, and Air Traffic Technology*, S. Khalid and N. Siddiqui, Eds. IGI Global Scientific Publishing, USA, 2024, pp. 150–174.
- [43] A. Hoti and A. Dermaku, "Corporate governance in the banking industry of Kosovo: does board size and board independence matter?" *International Journal of Finance & Banking Studies*, vol. 7, no. 3, pp. 20-34, 2018.
- [44] D. Qehaja, F. Zeka, and A. Hoti, "The effect of foreign direct investments on trade balance in southeast Europe during the period 2000–2018," *International Journal of Applied Economics, Finance and Accounting*, vol. 13, no. 1, pp. 29-39, 2022.
- [45] E. Perjuci and A. H. O. Hoti, "The effects of international financial reporting standards implementation on the financial performance and position of businesses in developing countries: Evidence from Kosovo," *International Journal of Applied Economics, Finance and Accounting*, vol. 13, no. 1, pp. 1-9, 2022.
- [46] H. Hoti and L. S. Sopa, "Compliance with International Standards on Auditing (ISAs): Evidence from Kosovo for the Financial Reporting Period 2015–2019," *Finance: Theory and Practice*, vol. 26, no. 2, pp. 219-230, 2022.
- [47] Z. H. Ahmed, A. S. Hameed, M. L. Mutar, and H. Haron, "An Enhanced Ant Colony System Algorithm Based on Subpaths for Solving the Capacitated Vehicle Routing Problem," *Symmetry*, vol. 15, no. 11, p. 2020, 2023.

- [48] M. L. Mutar, A. Burhanuddin, S. Hameed, N. Yusof, M. F. Alrifae, and A. A. Mohammed, "Multi-objectives ant colony system for solving multi-objectives capacitated vehicle routing problem," *Journal of Theoretical and Applied Information Technology*, vol. 98, no. 24, 2020.
- [49] M. F. Alrifae, Z. H. Ahmed, A. S. Hameed, and M. L. Mutar, "Using machine learning technologies to classify and predict heart disease," *International Journal of Advanced Computer Science and Applications*, vol. 12, no. 3, 2021.
- [50] A. S. Hameed, B. M. Aboobaider, N. H. Choon, M. L. Mutar, and W. H. Bilal, "Review on the methods to solve combinatorial optimization problems particularly: quadratic assignment model," *International Journal of Engineering & Technology*, vol. 7, no. 3.20, pp. 15–20, 2018.
- [51] M. L. Mutar, B. M. Aboobaider, and A. S. Hameed, "Rev Vehicle Routing Problem and Future Research Trend," *International Journal of Applied Engineering Research*, vol. 12, no. 20, 2017.
- [52] F. A. O. Sari et al., "Networks cyber security model by using machine learning techniques," *International Journal of Intelligent Systems and Applications in Engineering*, vol. 10, no. 1, pp. 257–263, 2022.
- [53] M. F. Alrifae, O. A. Ismael, A. S. Hameed, and M. B. Mahmood, "Pedestrian and objects detection by using learning complexity-aware cascades," in Proc. 2021 2nd Information Technology To Enhance e-Learning and Other Application (IT-ELA), pp. 12–17, IEEE, Dec. 2021.
- [54] A. S. Hameed, B. M. Aboobaider, H. C. Ngo, and M. L. Mutar, "Improved discrete differential evolution algorithm in solving quadratic assignment problem for best solutions," *International Journal of Advanced Computer Science and Applications*, vol. 9, no. 12, 2018.
- [55] A. A. Khudhair et al., "Impact on Higher Education and College Students in Dijlah University after COVID through E-learning," *Computer-Aided Design and Applications*, pp. 104–115, 2023.
- [56] A. S. Hameed et al., "A hybrid method integrating a discrete differential evolution algorithm with tabu search algorithm for the quadratic assignment problem: A new approach for locating hospital departments," *Mathematical Problems in Engineering*, vol. 2021, no. 1, p. 6653056, 2021.
- [57] A. T. Jalil et al., "Analytical model for thermoelastic damping in in-plane vibrations of circular cross-sectional micro/nanorings with dual-phase-lag heat conduction," *Journal of Vibration Engineering & Technologies*, vol. 12, no. 1, pp. 797–810, 2024.
- [58] A. S. Hameed, B. M. Aboobaider, N. H. Choon, M. L. Mutar, and W. H. Bilal, "A comparative study between the branch and cut algorithm and ant colony algorithm to solve the electric meter reader problem in rural areas," *Opcion*, vol. 34, no. 86, pp. 1525–1539, 2018.
- [59] Vashisth, B. Singh, R. Garg, and S. Kumpsuprom, "BPACAR: Design of a Hybrid Bioinspired Model for Dynamic Collision-Aware Routing with Continuous Pattern Analysis in UAV Networks," *Microsyst. Technol.*, vol. 30, no. 4, pp. 411–421, Nov. 2023.
- [60] G. Kaur, B. Singh, R. S. Batth, and R. Garg, "BATFE: Design of a Hybrid Bioinspired Model for Adaptive Traffic Flow Control in Edge Devices," *Microsyst. Technol.*, Dec. 2024.
- [61] G. Kaur, B. Singh, and R. S. Batth, "Design of an Efficient QoS-Aware Adaptive Data Dissemination Engine with DTFC for Mobile Edge Computing Deployments," *Int. J. Comput. Netw. Appl.*, vol. 10, no. 5, p. 728, Oct. 2023.
- [62] S. Akram, M. Raashid, M. Usman, S. Shahzad, and S. Zareen, "Correlates of Low Birth Weight and Effectiveness of Kangaroo Mother Care for its Management: Lessons Learned from A Tertiary Care Hospital of Lahore, Pakistan," *J. Educ. Soc. Stud.*, vol. 5, no. 3, pp. 213–220, 2024.
- [63] S. Akram, Z. Pervaiz, and A. R. Chaudhary, "The Impact of Income Inequality and Intergenerational Mobility on Human Development: An empirical evidence from Pakistan," *Int. J. Disaster Recovery Bus. Contin.*, vol. 12, no. 1, pp. 263–268, 2021.
- [64] S. Akram, "Bridging the gap: understanding out-of-school children in Pakistan," *Vulnerable Child. Youth Stud.*, vol. 19, no. 3, pp. 454–469, 2024.

- [65] B. C. C. Marella, "From Silos to Synergy: Delivering Unified Data Insights across Disparate Business Units," *International Journal of Innovative Research in Computer and Communication Engineering*, vol. 12, no. 11, pp. 11993–12003, Nov. 2024.
- [66] B. C. C. Marella, "Scalable Generative AI Solutions for Boosting Organizational Productivity and Fraud Management," *International Journal of Intelligent Systems and Applications in Engineering*, vol. 11, no. 10s, pp. 1013–1023, Aug. 2023.
- [67] D. Kodi and M. B. C. Chowdari, "Fraud resilience: Innovating enterprise models for risk mitigation," *Journal of Information Systems Engineering and Management*, vol. 10, no. 12s, pp. 683–695, 2024.
- [68] V. R. Anumolu and B. C. C. Marella, "Maximizing ROI: The intersection of productivity, generative AI, and social equity," in *Advances in Environmental Engineering and Green Technologies*, IGI Global, 2025, pp. 373–386.
- [69] M. Faisal et al., "Determining rural development priorities using a hybrid clustering approach: A case study of South Sulawesi, Indonesia," *Int. J. Adv. Technol. Eng. Explor.*, vol. 10, no. 103, 2023.
- [70] M. Faisal, T. K. A. Rahman, I. Mulyadi, K. Aryasa, Irmawati, et al., "A novelty decision-making based on hybrid indexing, clustering, and classification methodologies: An application to map the relevant experts against the rural problem," *Decis. Mak. Appl. Manag. Eng.*, vol. 7, no. 2, pp. 132–171, 2024.
- [71] S. Panyaram, "Digital Twins & IoT: A New Era for Predictive Maintenance in Manufacturing," *International Journal of Innovations in Electronic & Electrical Engineering*, vol. 10, no. 1, pp. 1-9, 2024.
- [72] S. Panyaram, "Automation and Robotics: Key Trends in Smart Warehouse Ecosystems," *International Numeric Journal of Machine Learning and Robots*, vol. 8, no. 8, pp. 1-13, 2024.
- [73] S. Panyaram, "Optimization Strategies for Efficient Charging Station Deployment in Urban and Rural Networks," *FMDB Transactions on Sustainable Environmental Sciences.*, vol. 1, no. 2, pp. 69–80, 2024.
- [74] S. Panyaram, "Integrating Artificial Intelligence with Big Data for Real-Time Insights and Decision-Making in Complex Systems," *FMDB Transactions on Sustainable Intelligent Networks.*, vol. 1, no. 2, pp. 85–95, 2024.
- [75] S. Panyaram, "Utilizing Quantum Computing to Enhance Artificial Intelligence in Healthcare for Predictive Analytics and Personalized Medicine," *FMDB Transactions on Sustainable Computing Systems.*, vol. 2, no. 1, pp. 22–31, 2024.
- [76] S. Panyaram, "Digital Transformation of EV Battery Cell Manufacturing Leveraging AI for Supply Chain and Logistics Optimization," *International Journal of Innovations in Scientific Engineering*, vol. 18, no. 1, pp. 78-87, 2023.
- [77] S. Panyaram, "Connected Cars, Connected Customers: The Role of AI and ML in Automotive Engagement," *International Transactions in Artificial Intelligence*, vol. 7, no. 7, pp. 1-15, 2023.
- [78] L. N. R. Mudunuri and V. Attaluri, "Urban development challenges and the role of cloud AI-powered blue-green solutions," in *Advances in Public Policy and Administration*, IGI Global, USA, pp. 507–522, 2024.
- [79] V. Attaluri, "Secure and Scalable Machine-to-Machine Secrets Management Solutions," *Int. J. Mach. Learn. Artif. Intell.*, vol. 5, no. 5, pp. 1–13, Jul. 2024.
- [80] V. Attaluri, "Dynamic User Permission Locking Based on Database Role Changes," *Int. J. Adv. Eng. Res.*, vol. 27, no. 1, pp. 1–9, 2024.
- [81] V. Attaluri, "Real-Time Monitoring and Auditing of Role Changes in Databases," *Int. Numer. J. Mach. Learn. Robots*, vol. 7, no. 7, pp. 1–13, Nov. 2023.
- [82] V. Attaluri, "Securing SSH Access to EC2 Instances with Privileged Access Management (PAM)," *Multidiscip. Int. J.*, vol. 8, no. 1, pp. 252–260, Dec. 2022.
- [83] M. Faisal, Irmawati, T. K. A. Rahman, Jufri, Sahabuddin, Herlinah, and I. Mulyadi, "A hybrid MOO, MCGDM, and sentiment analysis methodologies for enhancing regional expansion planning: A case study Luwu - Indonesia," *Int. J. Math. Eng. Manag. Sci.*, vol. 10, no. 1, pp. 163–188, 2025.

- [84] M. Faisal and T. K. A. Rahman, "Optimally enhancement rural development support using hybrid multy object optimization (MOO) and clustering methodologies: A case South Sulawesi - Indonesia," *Int. J. Sustain. Dev. Plan.*, vol. 18, no. 6, pp. 1659–1669, 2023.
- [85] I. Mulyadi, M. Thamrin, M. Faisal, S. Yunarti, Saharuddin, A. Djalil, and S. Mallu, "A hybrid model for palm sugar type classification: Advancing image-based analysis for industry applications," *Ingén. Syst. Inf.*, vol. 29, no. 5, pp. 1937–1948, 2024.
- [86] C. Koneti, G. C. Saha, and E. Howard, "End-to-End Visibility in Global Supply Chains: Blockchain and AI Integration," *European Economic Letters*, vol. 14, no. 4, pp. 545–555, 2024.
- [87] C. Koneti, G. S. Sajja, A. Adarsh, S. S. Yerasuri, G. Mann, and A. Mandal, "Human-Machine Collaboration in Supply Chain Management: The Impact of AI on Workforce Dynamics," *Journal of Informatics Education and Research*, vol. 4, no. 3, pp. 934–943, 2024.
- [88] C. Koneti, A. Seetharaman, and K. Maddulety, "Understanding the supply chain efficiency in e-commerce using the blockchain technology," *Library of Progress - Library Science, Information Technology & Computer*, vol. 44, no. 3, pp. 3147–3152, 2024.
- [89] M. T. Espinosa-Jaramillo, M. E. C. Zuta, C. Koneti, S. Jayasundar, S. d. R. O. Zegarra, and V. F. M. Carvajal-Ordoñez, "Digital Twins in Supply Chain Operations Bridging the Physical and Digital Worlds using AI," *Journal of Electrical Systems*, vol. 20, no. 10s, pp. 1764–1774, 2024.
- [90] C. Koneti, G. C. Saha, H. Saha, S. Acharya, and M. Singla, "The impact of artificial intelligence and machine learning in digital marketing strategies," *European Economic Letters (EEL)*, vol. 13, no. 3, pp. 982–992, 2023.
- [91] Garg, A. Mandal, C. Koneti, J. V. Mehta, E. Howard, and S. S. Karmode, "AI-Based Demand Sensing: Improving Forecast Accuracy in Supply Chains," *Journal of Informatics Education and Research*, vol. 4, no. 2, pp. 2903–2913, 2024.
- [92] M. Manikandan, V. Jain, C. Koneti, V. Musale, R. V. S. Praveen, and S. Bansal, "Blockchain Technology as a Decentralized Solution for Data Security and Privacy: Applications Beyond Cryptocurrencies in Supply Chain Management and Healthcare," *Library Progress International*, vol. 44, no. 3, pp. 5634–5643, 2024.
- [93] Garg, A. Mandal, C. Koneti, J. V. Mehta, E. Howard, and S. S. Karmode, "AI-based demand sensing: Improving forecast accuracy in supply chains," *J. Informatics Educ. Res.*, vol. 4, no. 2, pp. 2903–2913, 2024.
- [94] M. Murugan, V. R. Turlapati, C. Koneti, R. V. S. Praveen, A. Srivastava, and S. K. C, "Blockchain-based solutions for trust and transparency in supply chain management," *Library Progress International*, vol. 44, no. 3, pp. 24662–24674, 2024.
- [95] S. Sharma, K. Chaitanya, A. B. Jawad, I. Premkumar, J. V. Mehta, and D. Hajoary, "Ethical considerations in AI-based marketing: Balancing profit and consumer trust," *Tuijin Jishu/Journal of Propulsion Technology*, vol. 44, no. 3, pp. 1301–1309, 2023.
- [96] T. D. Humnekar, N. Chinthamu, K. Chaitanya, S. Venkatesh, A. K. Mishra, and S. Soni, "Modernized digital marketing strategies to improve customer experience and engagement," *European Economic Letters*, vol. 14, no. 2, pp. 909–916, 2024.