

Identification of Facial Expressions and Gestures using Artificial Neural Networks

Anirban Chakraborty

Lovely Professional University

Abstract: Similar technologies can be used for knowledge exchange for two individuals. These could be words or motions. Movement recognition involves the detection and acknowledgment of movements from all forms of body's movement, but only from the face and the hand. This is a way of conveying knowledge through movements made by users. This provides important dimensions for behavioural and human-computer interaction user interface. Many methods are usable, including MATLAB, Artificial Neural Networking, etc. There are several solutions. This paper offers an in-depth examination of how neural networks enable movements to be understood more naturally. This involves three phases: image processing, retrieval and identification of features. In the first step, the picture is taken with an average frame rate with a webcam, a digital camera. Attributes are extracted with the input picture during the second phase. The features can be angle between fingertips, open, no-open, closed or semi-closed fingers, and finger recognition. The artificial neural network structure is primarily used for image recognition.

Keywords: Gesture Identification, ANN, MATLAB, Image Acquisition, Feature Extraction.

1. INTRODUCTION

Communication is nowadays characterized as the communication by voice, images, signals or actions of thoughts and messages. Yet people with disabilities have trouble communicating. And dumb and deaf people use their hands to speak out. We make various motions in order to talk to others. The activities include the creation of alphabets in English. The sign language is called so. The movements cannot be easy for the person on the contrary as they talk via machine. So these expressions can be translated into signals and spoken phrases to be easily understood. Gesture Understanding means that the detection and understanding of movements arises from any kind of body motion, but usually comes from the face or hand [1][9]. The recognition of gesture expression is one of the fields studied for the surrounding population and is highly important.

Management identification is the mechanism through which user movements are used to transmit information or to monitor the system. Visual movements are a strong communication device in everyday life[5][9]. As in sign languages, a series of physical signals that make up a whole language. You will express a variety of facts and emotions economically. This seminar indicates modestly that gesture-based feedback is so valuable for the transmission of information or device management through defining specific human movements [2][8][9].

Numerous methods have been developed for identification of hand gesticulate actions, from Hidden Markov mathematical chains to software or soft computerized approaches [3][4]. The Secret Markov Input Outsourcing models were suggested by Sebastian Marcel. In order to extract hand regions for various lighting environments for manual identification and many attempted applications of colour or gesture information, a new complexion model had been proposed by the

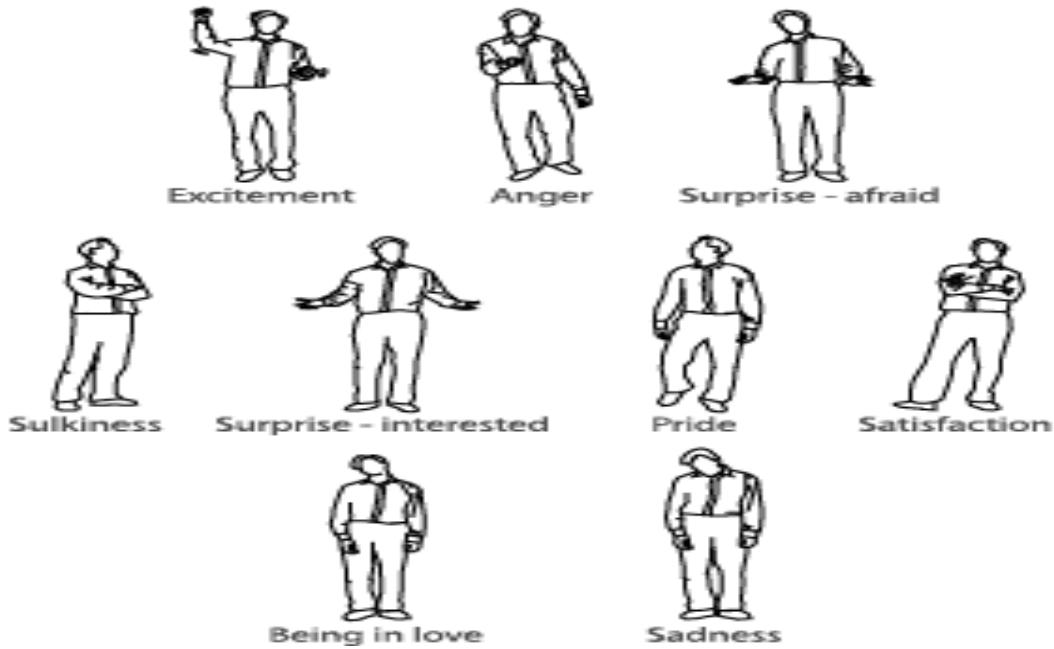
author Jianjie Zhang. A hand-gesture-recognition-system based on the Type-Analysis of Static Being was developed by Attila Licensar. Papapmarkos states that color segmentation allows for the identification of the area of the eye. The system of Hand Manual Recognition utilizing Hidden Markov models was suggested by Byung-Woo Min [4][8].

Huaing et al. use the 3D neural network approach for creating a recognition system for Taiwanese Sign Language (TSL) with 15 separate movements [4]. In comparison, this paper presents the understanding of a manual movement by way of the Neural Network, which takes movements from a webcam, creates a text and talks.

FIG 1: Various Facial Expressions

2. TYPES OF GESTURE IDENTIFICATION

Gesture identification is the process by which gestures are interpreted to determine purpose. The specific human motions may be described by using gesture recognition technology to communicate various information or monitor equipment for various purposes. A computer system represents human movement. A broad user interface model includes components such as leadership recognition, facial and voice recognition, eye tracking, and lip expression recognition. Gestures may be static (the user adopts a certain posture or configuration) or dynamic (press, stroke, poststroke). The gesture can easily distinguish the following styles:


- A. Identification of Head and Face: Facial movement recognition facilitates touch-free engagement between users and their gadgets. These are fundamental ways for individuals to convey their emotions. They are inherently important. The purpose of facial gesture detection is to enable robots to efficiently interpret human speech and emotions while avoiding different physical barriers.
 - ✓ Knots and tears
 - ✓ Eyebrow elevation
 - ✓ Eye detection and blinking
 - ✓ Emotions include joy, sorrow, surprise, fury, and horror.

Several instances are given. Facial expression is the process of extracting particular information from facial symbols such as the lips, nose, and eyes in a given picture. This approach, like the recognition of hand gestures, tackles a set of unique issues presented by physical variances in human faces.

- B. Body Motion Recognition: Body motion refers to full-body movement that recognizes body

motions and human activities. Recognition of bodily behavior and human activities. For example, monitoring two environmental actions:

- ✓ Understanding human recovery
- ✓ Athletic training strategies.

FIG 2: Gestures of Body

Hand-Gesture-Recognition uses two distinct techniques: glove hand recognition and eye-hand recognition. The glove enables the customer to be connected to a gadget. This requires the user to transport a long brace and many cables to the machine. The operator will wear a glove in front of the camera and make signals. This makes it simple and natural for the user to interact with the machine.

A vision-based system uses one or more lenses to collect photos of human hand motions and lights, improving the accuracy of gesture recognition [5]. When the consumer's hand changes, finger motions may be tracked quickly and easily. A computer designed for perception can handle features like texture and motion light. This is determined by the aspects of a camera listed below:

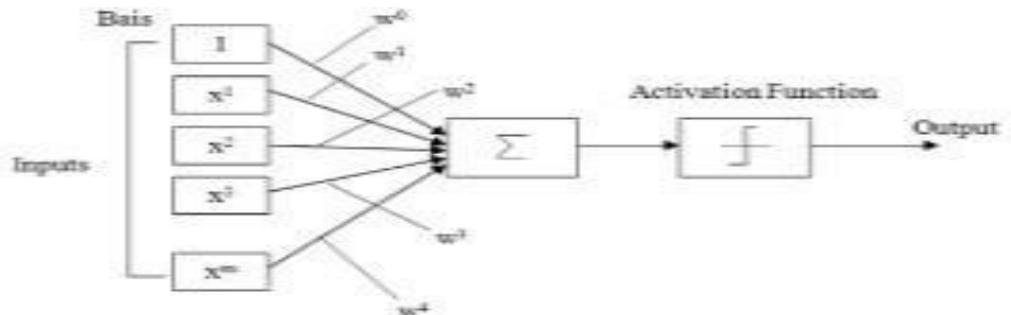

- Camera speed and latency, whether 2-D or 3-D.
- The requirement for users.
- Time.
- A vision-based system can only detect certain types of finger movement. To improve the accuracy of a gesture machine, it's important to choose motions with context and incorporate many samples per gesture [6].

FIG 3: Gloves gesture and naked hand gesture

3. ARTIFICIAL NEURAL NETWORK

The definition of a neuron is basically derived from biological area, where artificial neural networks play a basic key role in the human body. Everyone of our research in the body is performed by neural networks composed of millions of parallel neurons. Growing neuron is produced by small electrical signals from other neurons, and electric signals to other neurons are also issued. The weighting of these outputs is in that no feedback 'ages' the neuron unless there is a certain level. Such weights can be modified through experience. Artificial neural networks comprise, similar to human brain, the artificial neurons called perceptrons that obtain the numerical value and after measuring and integrating the inputs. Then, we convert the effects into output by a transfer method. The transition function may be like Sigmoid tangent functions, which are hyperbolic.

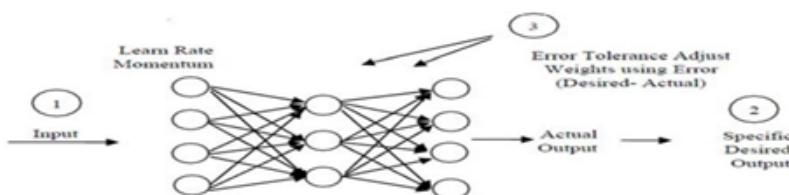
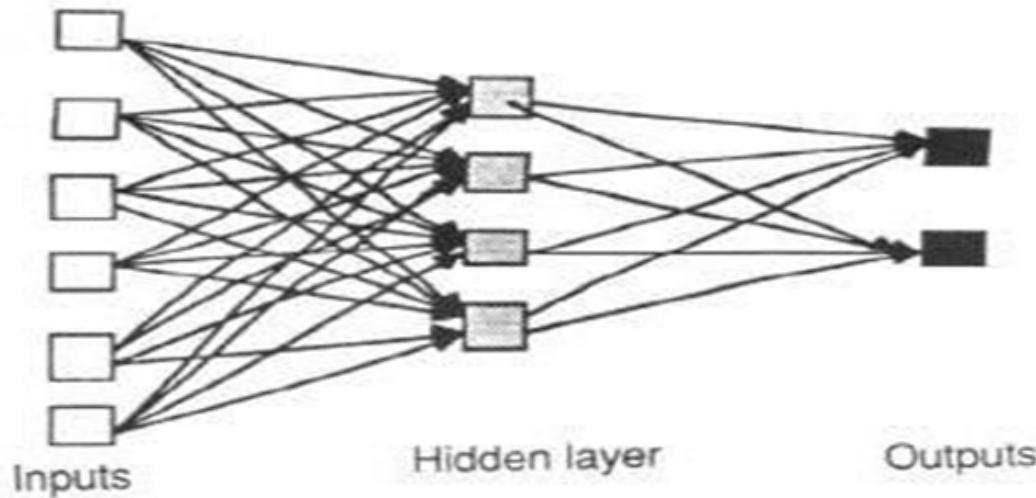


FIG 4: Artificial Neural Networks

Neural networks will today be equipped to solve difficult problems for traditional machines or for humans. Certain networks can be derived from unmonitored various training techniques or programming approaches directly. The directed training methods are widely used.


4. BACKPROPAGATION LEARNING ALGORITHM

The context is a directed learning strategy that was initially established by Paul Werbos in 1974 and popularized by David Rumelhart in 1986. A specific activation mechanism is required. The 'learning' is a regulated approach employing the Delta rule that occurs with a forward triggering flow and a reverse weight correction distribution of mistakes with each loop or 'epoch'. Furthermore, it provides for a random "surview" of what neural networks may be if they were initially met with their pattern. It then calculates how much its response deviates from the actual one and adjusts its link weights appropriately. Returns function effectively in a multilayer input network.

FIG 5: Back Propagating Algorithm

ANN feed forward enables signals to go in a single path from source to destination. FFEDFORWARD Networks allow signals to go in a single direction. There are no inputs (loops), which means that layer performance has no influence on the same layer. Feedforward ANNs seem to be networks that link inputs and outputs. These are widely used to identify projects. In programming, feed-forward generally refers to a ptron network with multi-layered felt contributions from all neurons, which means there are no feedback loops, but not before them.

FIG 6: Feedforward multi layered network

5. CONCLUSION

In this study, we provide an understanding of manual movement identification using Neural Networks, one of the most powerful automated processing approaches for hand gesture recognition. Nonverbal communication is the most effective way to interact with persons with impairments, particularly among the elderly. Neural networks are useful when the data sets are small and not projected to grow. Another advantage of our research is that you may learn from network generation by using neural networks. In this post, we utilized the algorithm and the Feedforward network to do back propagation. The movement may be described by identifying fingers and postures from the input hand gesture recording. Hand and finger segmentation is critical throughout this procedure. When neural networks were utilized, accuracy increased. In our article, we proposed neural connections that provide better outcomes than alternative topologies. This technique might be applied to a variety of different bodily motions.

REFERENCES

1. Rajesh Mapari, Govind Kharat, "Hand Gesture Recognition using Neural Network", International Journal of Computer Science and Network, Vol. 1(6), pp. 56-60, 2012.
2. Sikender Mohsienuddin Mohammad, "IMPROVE SOFTWARE QUALITY THROUGH PRACTICING DEVOPS AUTOMATION", International Journal of Creative Research Thoughts (IJCRT), ISSN:2320-2882, Volume.6, Issue 1, pp.251-256, March 2018, Available at :<http://www.ijcrt.org/papers/ IJCRT1133482.pdf>
3. Hongyi Liu and Lihui Wang, "Gesture recognition for human-robot collaboration: A review", International Journal of Industrial Ergonomics, Volume 68, Pages 355-367, November 2018.
4. Shweta K. Yewale, Pankaj K. Bharne, "Artificial Neural Network approach for Hand Gesture Recognition", International Journal of Engineering Science and Technology, Vol. 3, pp 2603-2608, April 2011.
5. RR Nadikattu, 2016 THE EMERGING ROLE OF ARTIFICIAL INTELLIGENCE IN MODERN SOCIETY. International Journal of Creative Research Thoughts. 4, 4 ,906-911.
6. Oyebade K. Oyedotun & Adnan Khashman, "Deep learning in vision-based static hand gesture recognition", Neural Computing and Applications, Vol. 28, pp. 3941–3951, 2017.
7. Prateem Chakraborty, Prashant Sarawgi, Ankit Mehrotra, Gaurav Agarwal, Ratika Pradhan, "Hand Gesture Recognition: A Comparative Study", International Multi-Conference of Engineers and Computer Scientists, pp. 19-21, 2008.

8. Sushmita Mitra, Tinku Acharya, "Gesture Recoognition: A Survey", IEEE Transactions on systems, man and cybernetics, Vol. 37, Pp. 311-324, 2007.
9. Rahul Reddy Nadikattu, 2014. Content analysis of American & Indian Comics on Instagram using Machine learning", International Journal of Creative Research Thoughts (IJCRT), ISSN:2320-2882, Volume.2, Issue 3, pp.86-103.
10. Chang, J. Chen, W. Tai, and C. Han, "New Approach for Static Gesture Recognition", Journal of Inforpmation Science and Engineering, Vol. 22, pp. 1047-1057, 2006.
11. Sneha U. Bohra and Dr. P V. Ingole , "Review on Neural Network Based Approach Towards English Handwritten Alphanumerical Characters Recognition", International Journal of Computer Sciences and Engineering, Vol. 01 (03), pp. 22-25, Nov 2013.
12. Sikender Mohsienuddin Mohammad, "AUTOMATION TESTING IN INFORMATION TECHNOLOGY", International Journal of Creative Research Thoughts (IJCRT), ISSN:2320-2882, Volume.3, Issue 3, pp.118-125, August 2015, Available at: <http://www.ijcrt.org/papers/IJCRT1133463.pdf>
13. Lionel Pigou, Aäron van den Oord, Sander Dieleman, Mieke Van Herreweghe & Joni Dambre, " "Beyond Temporal Pooling: Recurrence and Temporal Convolutions for Gesture Recognition in Video", International Journal of Computer Vision, Vol. 126, pp. 430–439, 2018.
14. Sikender Mohsienuddin Mohammad, "DEVOPS AUTOMATION AND AGILE METHODOLOGY ", International Journal of Creative Research Thoughts (IJCRT), ISSN:2320-2882, Volume.5, Issue 3