

## Nanomolecular Materials: For New Generation Sensor Technologies

**Abdurakhmonova Mushtariy Elmurodovna**

*Termiz State University, Faculty of Physics and Mathematics,*

*1st year student of Physics Education*

**Abstract:** Nanomolecular materials have gained significant importance in many areas of science and technology in recent years, in particular in sensor technologies. These materials are characterized by their unique physicochemical properties, which allow them to be used in the production of sensors requiring high sensitivity and accuracy. Nanomolecular materials are mainly nanometer-sized structures, which are very large in relation to their surface area. These properties also allow them to change their chemical reactivity and physical properties.

**Keywords:** nanomolecular materials, science, chemical reactivity, physical properties, harmful gases, sensors, technologies, innovative technologies, materials.

### INTRODUCTION

As a result of the rapid development of modern science and technology, devices based on nanoscale materials are widely used. Nanomolecular materials are used for many different sensors, including gas, chemical, and biological sensors. They have very high sensitivity, allowing them to quickly and accurately detect changes in the environment. For example, gas sensors made of nanomolecular materials are used to detect pollutants in the air, including carbon dioxide, nitrogen oxides, and other harmful gases. These sensors also play an important role in ensuring safety in industrial processes and protecting the environment. The use of nanomolecular materials in new generation sensor technologies is due to their high conductivity and sensitivity. This article analyzes the physicochemical properties of nanomolecules and their importance in next-generation sensor technologies.

### THEORETICAL FOUNDATIONS

Nanomolecular materials are materials with dimensions ranging from 1 to 100 nanometers. These materials have unique physicochemical properties and exhibit completely different behavior compared to macroscopic substances. For example, they have a large surface area, which increases their reactivity. It also has a high level of sensitivity in terms of optical, electrical, and thermal conductivity, due to the manifestation of quantum effects.

Sensors are devices that detect physical or chemical changes in the environment and convert them into signals. Sensors made from nanomaterials can process a huge amount of information, despite their small size. This allows for applications in many areas such as medicine, ecology, security, and agriculture.

### NANOMOLECULAR MATERIALS IN SENSOR TECHNOLOGIES

The use of nanomolecules as sensors is related to their sensitivity to various external factors. For example, carbon nanotubes, graphene, quantum dots, metal oxide nanoparticles, and other materials are used to detect gases such as oxygen, hydrogen, carbon dioxide, and ammonia.

Graphene-based sensors are among the materials that are very thin but have high sensitivity. They can detect the presence of a single molecule. This is useful in medicine, especially in the early detection of diseases.

In addition, in biological sensors (biosensors), nanomolecules are combined with antibodies, DNA fragments, or enzymes, and based on this, specialized analytical devices are created. For example, sensors that detect glucose levels are widely used in monitoring diabetes.

Optical sensors work based on the interaction of nanomolecules with light. This allows for very accurate and rapid analysis using plasmonic nanostructures or quantum dots.

## **LITERATURE REVIEW AND RESEARCH METHODOLOGY**

Nanomolecular materials, such as graphene and other nanostructures, significantly increase electrical conductivity. Sensors created using these materials are distinguished by their sensitivity and speed compared to traditional sensors. They also have the advantage of being small and lightweight. Sensors developed using nanomolecular materials also allow for the modification of their chemical properties. For example, by introducing different chemical groups onto nanomaterials, their sensitivity to specific gases or chemicals can be increased. This process increases the sensors' versatility and ability to work in a variety of conditions. [1]

The use of nanomolecular materials in sensor technologies is also important for biological sensors. Biological sensors made using nanomolecular materials are used for, for example, blood tests, early detection of diseases, and other medical purposes. These sensors provide high sensitivity and accuracy in detecting biological molecules, which creates new opportunities in medicine. [2]

## **DISCUSSION AND CONCLUSION SECTION**

Manufacturing using nanomolecular materials helps improve sensor, software lifespan and reliability. Traditional sensors often fail within a short period of time or give inaccurate results. However, sensors made using nanomolecular materials provide long-term performance and high accuracy. This, in turn, expands the areas of application of sensors. The use of nanomolecular materials in sensor technologies is also reflected in their manufacturing process. [3]

Nanomolecular materials are often prepared using chemical or physical methods. These processes determine the quality of the materials and their performance in sensors. The use of innovative technologies in the production process of nanomolecular materials helps to improve their quality and reduce their cost. The development of sensor technologies using nanomolecular materials will open up many new possibilities in the future. These materials play an important role in environmental protection, industrial safety, and the development of new approaches in medicine. Sensors using nanomolecular materials allow for new advances in various fields of humanity by providing fast and accurate data. [4]

## **CONCLUSION**

In conclusion, nanomolecular materials are of great importance in the development of new generation sensor technologies. Their high sensitivity, accuracy, and long operating life ensure that the sensors can be used in many industries. Sensors developed using nanomolecular materials are expected to create new opportunities in the future in environmental protection, medicine, and industry. These materials play an important role in the development of science and technology and contribute to improving human life.

## **LIST OF REFERENCES**

1. Abdullayev, A. (2020) "Nanomaterials and their role in sensor technologies." Academy of Sciences of the Republic of Uzbekistan.

2. Karimov, B. (2021). "Nanomolecular Materials: Applications and Prospects." Tashkent: National University of Uzbekistan Press.
3. Murodov, D. (2019). "New Generation Sensors: The Importance of Nanomaterials." *Uzbekistan Journal of Chemistry*, 3(2), 45-50
4. Sadykova, N. (2022). "Nanomaterials and their applications in medicine." Collection of scientific articles in medical sciences, 12(1), 78-82.
5. Tashkentov, R. (2023). "Nanomolecular Materials: Innovations in Energy and Sensor Technologies." *Uzbekistan Energy Journal*, 5(4), 12-20.
6. Yunusova, L. (2021). "Nanomaterials and their ecological applications." *Journal of Ecology of Uzbekistan*, 7(3), 34-39.
7. Kadyrov, E. (2020). "Nanomolecular Materials: New Opportunities in the Food Industry." *Journal of Food Technologies*, 6(2), 55-61.