

Sulfur Mines Are Mined by Underground Smelting

Ergasheva Zulkhumor Abdaaliyevna

Tashkent State Technical University named after Islam Karimov Assistant teacher

Zaytova Madina Nazarbay kizi

Student of Nukus Mining Institute

Abstract: The article deals with the extraction of sulfur minerals from underground by non-traditional (geotechnological) methods. In particular, this method is effective due to its uniqueness and simple technology. This method is widely used in the extraction of small or deep sulfur bodies from sulfur mining. Low melting temperature of sulfur mineral, i.e., ease of movement is the basis for this method. Sulfur minerals brought to a state of motion are brought to the surface with the help of wells.

Keywords: sulfur, underground melting, well, geotechnological method, autoclave, hydrothermal waters.

Sulfur (S) is a chemical element belonging to group VI of Mendeleev's periodic system, atomic number 16, atomic mass 32, and making up 2% of the Earth's crust by mass. In nature, sulfur is found free (purely native) and in the form of compounds. The most important natural compounds of the sulfur element are metal sulfides, such as MaS , FeS_2 - iron colchaden (pyrite), ZnS - zinc cheater, PbS - glenite, Cu_2S - copper glitter, etc. In the case of sulfur sulfates, anhydrite $CaSO_4$, gypsum $CaSO_4 \cdot 2H_2O$, heavy spar $BaSO_4$, Glauber's salt, etc. also occurs. In addition, element Sulfur is present in the form of organic and inorganic compounds in coal, shale, oil, natural gases, animal and plant organisms. Pure native sulfur is found in several allotropic forms in Mexico, USA, Italy, Japan, CIS countries. Rhombic lattice Sulfur is yellow, density 2.07 g/cm^3 (at 20°), melting point 112.8° C , boiling point 445° C . Monoclinic Sulfur consists of prismatic clear crystals, density 1.96 g/cm^3 , melting point 118.9° C . If we conclude from this, if the element of sulfur is heated, that is, if heat is sent to the body of sulfur at 120° C , it will melt and turn into a mobile liquid of yellow color. At 160° C , it turns brown and becomes viscous. Sulfur combines with almost all elements except inert gases, nitrogen, iodine, platinum, gold. It ignites at 250° in oxygen and 360° in air.

After the invention of coal, industrial production of sulfur increased significantly. One of the main reasons for this is that sulfur became an integral part of the industry along with coal and saltpeter. Today, sulfur is an important raw material in many branches of the chemical industry. The annual consumption of sulfur in the world is about 20-24 million tons. Its industrial consumers are sulfuric acid, paper, rubber, matches, pyrotechnics, means and preparations for combating pests in the national economy, partly medicine, etc. Sulfur is one of the most abundant elements in the earth's crust, its share is 0.03%. However, Sulfur in pure form is not common, it is often found in mixtures. Its pure state is a rock composed of pure sulfur (S).

Sulfur ores are mined in different ways depending on the conditions of formation. But in any case, a lot of attention is paid to safety, because sulfur mines are almost always accompanied by the release of toxic gases and sulfur compounds. In addition, sulfur is highly prone to

spontaneous combustion. Until the end of the 19th century, sulfur was mined in the open pit like other mineral deposits. As usual, the cover rocks were opened with the help of excavators and other equipment, and the ore was extracted from the massif, mined, loaded and transported.

Extraction of sulfur by smelting underground wells. The United States and Mexico are the world's largest suppliers of sulfur, and the reason for this, of course, was the new methods of sulfur mining. At the same time (at the end of the 19th century), geologists discovered deposits rich in sulfur ore in the southern parts of the United States. But the sulfur layer was not easy to reach in this period and was not economically efficient. Because the sulfur layers were much deeper than the surface of the earth.

Chemist Hermann Frasch found a way to melt sulfur underground under the influence of heat in a geotechnological method and extract it to the surface like oil through wells. The fact that sulfur melts at a relatively low temperature of less than 120°C proved Frasch's idea to be true. In principle, the implementation of the Frasch technology was very simple, since it consisted only of drilling wells into the sulfur body and abscising. Superheated water is piped into the sulfur body and the sulfur is dissolved. In most cases, hydrothermal waters were used, because in order to bring the sulfur to 120 ° C, even higher temperature water or steam had to be sent through the wells. Bringing the water to this temperature would have caused a lot of trouble on the surface, so the use of hydrothermal waters found underground was the only option. Dissolved sulfur rises through pipes heated on all sides. Water pipes that can withstand the above temperatures are used when laying pipes along the well. The third modern version of the Flash technology is the installation of narrow tubes through which compressed air is sent down. As a result, dissolved sulfur rises to the surface. The main advantages of this method created by Frash:

- Getting relatively pure sulfur at the first stage of extraction;
- Ore mining is technically and economically cheap;
- High efficiency in ore mining.

In the past, only the "salt domes" of the Pacific coast of the United States and Mexico were thought to be able to extract sulfur by underground smelting, because the special characteristics of the land itself allowed this method to be used. However, the experiments conducted in Poland and the USSR rejected this idea. During this period, people in Poland were already extracting sulfur in this way. In 1968, the first Sulfur wells were commissioned in the USSR. Sulfur ores mined in quarries and mines had to be processed. In this method, the cost of processing was very low or almost non-existent. Later, steam water, filtration, thermal, centrifugal and extraction methods of non-conventional sulfur extraction were added to the extraction methods.

The thermal method of underground sulfur extraction is considered ancient. In the 18th century, in the kingdom of Neopolus, sulfur heaps were melted with "solfatars". Until now, in Italy, sulfur is melted in primitive "calcarone" furnaces. Here, the heat needed to melt the sulfur from the ore body is obtained by burning some of the sulfur being mined. This process is inefficient, with losses as high as 45%. Because burning coal to heat water at the temperature necessary to melt sulfur is not effective because the price of coal is higher than sulfur. Italy became the home of steam methods for extracting sulfur from ores. In 1859, Giuseppe Gill received a patent for his apparatus. It is the ancestor of autoclaves. The autoclave method is still used in many countries and has been greatly improved. During the autoclave process, the sulfur ore concentrate enriched with up to 80% of sulfur is poured into the aktoclav after being made into a liquid slurry with reagents. Water vapor is supplied there under strong pressure, the pulp heats up to 130°C, the sulfur contained in the concentrate dissolves and is separated from the ore. After a short period of cooling, the dissolved sulfur separates. Then the waste is removed from the autoclave (aqueous suspension) and, since the waste still contains a lot of Sulfur, it is processed again. In Russia, the autoclave method was first used by engineer K. G. Patkanov in 1896. Today, a modern autoclave is as large as a four-story building, and such autoclaves are installed, in

particular, at the Sulfur Smelting Plant of the Rozdolsk Mining and Chemical Combine in the Carpathian region.

References:

1. O'g'li R. Z. Y., Abdaaliyevna E. Z. 3D Technological System of Management of Geological Exploration Processes of Mining Enterprises. – 2022.
2. Mustapaevich D. K. et al. Underground mine mining systems and technological parameters of mine development //INTERNATIONAL JOURNAL OF SOCIAL SCIENCE & INTERDISCIPLINARY RESEARCH ISSN: 2277-3630 Impact factor: 7.429. – 2022. – T. 11. – №. 10. – C. 110-117.
3. Mustapaevich D. K. O'telbayev Azizbek Alisher o'g'li, O'razmatov Jonibek Ikromboy o'g'li, & Mnajatdinov Dastan Mnajatdin o'g'li.(2021). PROPERTIES OF COAL, PROCESSES IN COAL MINING COMPANIES, METHODS OF COAL MINING IN THE WORLD. JournalNX-A Multidisciplinary Peer Reviewed Journal, 7 (10), 231–236.
4. Umirzoqov A. Justification of rational parameters of transshipment points from automobile conveyor to railway transport //Scienceweb academic papers collection. – 2020.
5. Djaksimuratov K. Comprehensive monitoring of surface deformation in underground mining, prevention of mining damage. Modern technologies and their role in mining //Scienceweb academic papers collection. – 2021.
6. Alisher o'g O. A. et al. Conveyor belt structure and mode of operation in mines //Eurasian Journal of Engineering and Technology. – 2022. – T. 11. – C. 72-80.
7. Khayitov O. et al. Calculation and development of a model of the blasting area in mining enterprises //International Bulletin of Engineering and Technology. – 2023. – T. 3. – №. 5. – C. 5-12.
8. Ravshanov Z. 3D Technological System of Management of Geological Exploration Processes of Mining Enterprises //Scienceweb academic papers collection. – 2022.
9. Bekbawlievich S. B. et al. PROSPECTS FOR THE RATIONAL USE OF IRON ORE OF SULTAN UVAYS AT THE TEBINBULAK DEPOSIT //Galaxy International Interdisciplinary Research Journal. – 2021. – T. 9. – №. 12. – C. 609-613.
10. Ravshanov Z. Mining processes of drilling machines //Information about the technological alarm system of drilling machines. – 2022.
11. Ravshanov Z. et al. Evaluation of the strength of rocks in open mining processes in mining enterprises //Science and innovation. – 2023. – T. 2. – №. A4. – C. 96-100.
12. Ravshanov Z. et al. Methods of determining the safety and environmental impact of dust and explosion processes in mining enterprises //International Bulletin of Applied Science and Technology. – 2023. – T. 3. – №. 4. – C. 415-423.
13. Mustapaevich D. K. et al. Underground mine mining systems and technological parameters of mine development //INTERNATIONAL JOURNAL OF SOCIAL SCIENCE & INTERDISCIPLINARY RESEARCH ISSN: 2277-3630 Impact factor: 7.429. – 2022. – T. 11. – №. 10. – C. 110-117.
14. Axmet o'g'li M. A. et al. IN GEOLOGICAL AND GEOTECHNICAL PROCESSES IN THE MINE USE OF TECHNOLOGICAL SCANNING EQUIPMENT IN THE UNDERGROUND MINING METHOD //Intent Research Scientific Journal. – 2023. – T. 2. – №. 1. – C. 20-27.
15. Alisher o'g O. A. et al. MINING TECHNOLOGICAL EQUIPMENT THAT DETERMINES THE SLOPE ANGLES OF THE MINE BY MEANS OF LASER BEAMS. – 2023.

16. Ravshanov Z. Determination of mineral location coordinates in geotechnology and mining enterprises //Scienceweb academic papers collection. – 2023.
17. Djaksimuratov K. Comprehensive monitoring of surface deformation in underground mining, prevention of mining damage. Modern technologies and their role in mining //Scienceweb academic papers collection. – 2021.
18. Хайтов О. Г. и др. Особенности разработки пластового месторождения фосфоритов //Глобус. – 2020. – №. 5 (51). – С. 19-21.
19. Хайтов О., Умирзоков А., Равшанов З. Анализ текущего состояния и пути повышения эффективности разработки нефтегазовых месторождений юго-восточной части бухаро-хивинского региона //Материалы конференций МЦНД. – 2020. – С. 8-11.
20. G'ofurovich K. O. et al. Justification of rational parameters of transshipment points from automobile conveyor to railway transport //World Economics and Finance Bulletin. – 2021. – Т. 1. – №. 1. – С. 20-25.
21. O'g'li R. Z. Y., Abdaaliyevna E. Z. 3D Technological System of Management of Geological Exploration Processes of Mining Enterprises. – 2022.
22. Ravshanov, Z. (2022). MINING PROCESSES OF DRILLING MACHINES. INFORMATION ABOUT THE TECHNOLOGICAL ALARM SYSTEM OF DRILLING MACHINES.
23. Ravshanov, Z. (2023). Coal Mine Design and Explosion Prevention Studies.
24. Ravshanov Z. RESEARCH ON SELECTION AND PERFORMANCE IMPROVEMENT OF BLAST HOLE DRILLING EQUIPMENT //International scientific journal «MODERN SCIENCE AND RESEARCH». – 2023.
25. Ravshanov, Z. (2023). INSTRUCTIONS FOR CREATING A STEP-BY-STEP PIT DESIGN IN MINING ENTERPRISES.
26. Yahyo o'g'li R. Z. et al. INSTRUCTIONS FOR CREATING A STEP-BY-STEP PIT DESIGN IN MINING ENTERPRISES //Open Access Repository. – 2023. – Т. 10. – №. 6. – С. 1-6.
27. Ravshanov Z. Y., Ergasheva Z. A., Sailau A. M. KARYERLARNING PASTKI GORIZONTLARIDAGI KON MASSASINI AVTOMOBIL TRANSPORTLARIDA TASHISH USULLARINI TANLASH //Инновационные исследования в современном мире: теория и практика. – 2023. – Т. 2. – №. 20. – С. 4-6.
28. Ravshanov Z., Ergasheva Z., Sailau A. MEASURES OF RECULTIVATION OF MINING AREA IN QUARRIES //International Conference on Management, Economics & Social Science. – 2023. – Т. 1. – №. 3. – С. 54-56.
29. Abdaaliyevna E. Z. et al. Coal Mine Design and Explosion Prevention Studies //Nexus: Journal of Advances Studies of Engineering Science. – 2023. – Т. 2. – №. 5. – С. 255-259.
30. Ravshanov Z. Расчет устойчивости нижнего участка борта карьера «Мурунтау» с учетом программной комплекс «Ustoi» //Scienceweb academic papers collection. – 2021.
31. Ravshanov Z. Technological Stages of determining the Distance to the Location of Rocks in the Development of a 3D Model of Mining Enterprises //Scienceweb academic papers collection. – 2022.
32. Ravshanov Z. Анализ текущего состояния и пути повышения эффективности разработки нефтегазовых месторождений юго-восточной части бухаро-хивинского региона //Scienceweb academic papers collection. – 2020.