

Features of the Geological Structure of the Eastern Ustyurt's Jurassic Deposits

Khayitov Odiljon Gofurovich

Candidate of geological and mineralogical Sciences, associate Professor, head of the Department "Mining", 100095, Republic of Uzbekistan, Tashkent, University Street, 2, Tashkent state technical University

Qoshsayev Uchkun Quvvatovich

Tashkent State Technical University named after Islam Karimov Associate professor

Ergasheva Zulkhumor Abdaliyevna, Barotov Vasiliddin Nusrat ugli

Tashkent State Technical University named after Islam Karimov Assistant teacher

Abstract: This article examines the features of the geological structure of the Jurassic deposits of Eastern Ustyurt. Terrigenous deposits of Lower Jurassic age are noted to be of low thickness throughout Eastern Ustyurt. The sediments are composed predominantly of sandstones and siltstones, with a high content of carbonized residues. The Lower Jurassic sequence is composed of interbedded terrigenous rocks (sandstones, mudstones, siltstones, gravelites), while a clearer differentiation of sediments and the presence of pure differences are observed in comparison with the overlying Upper and Middle Jurassic deposits, which is reflected by the presence in the section of thick up to 1149 (Karaaudan) m and more layers of sandstones and clays.

Keywords: Lower Jurassic, sedimentary cover, foundation, sandstone, siltstone, trough, Kossor. thickness of sediments.

The territory of the Ustyurt region is completely covered by small- and medium-scale gravimetric surveys with large-scale detailing of individual areas. The gravity field of the Ustyurt region is determined by the total influence of density inhomogeneities of the basement and the boundaries of the sedimentary cover. Here the South Aral zone of predominantly positive anomalies, the North Ustyurt minimum, the Central Ustyurt maximum zone and the South Ustyurt Assakeaudan minimum are distinguished [1; p.17].

Jurassic deposits occur with erosion and angular unconformity, represented by three sections, the stratigraphic completeness and thickness of which vary from west to east.

Terrigenous deposits of Lower Jurassic age are noted to be of low thickness throughout Eastern Ustyurt. The sediments are composed predominantly of sandstones and siltstones, with a high content of carbonized residues.

The rock is heavily clayey in places, spotted, weakly layered, with abundant inclusions of plant remains. Sandstones are light gray, gray, fine- and fine-grained, dense, micaceous-clayey cement of the pore type, with a gradual transition to siltstone with poor visibility porosity. The siltstone is light gray, strongly clayey, slightly calcareous, slightly mica, with streaks of gray mudstone-like clays and inclusions of charred plant remains.

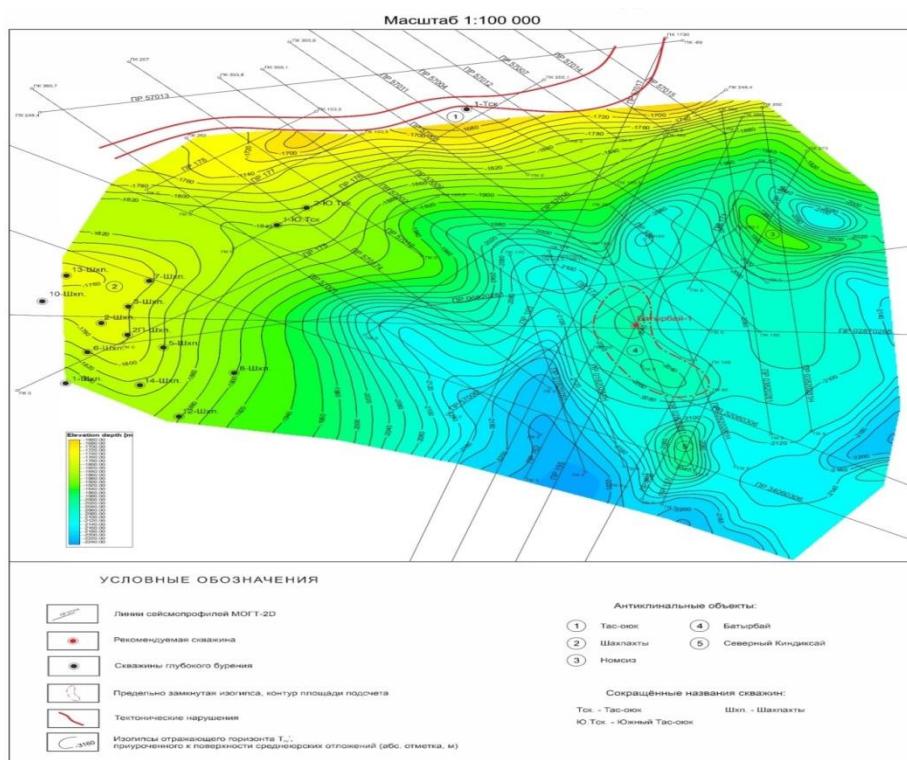
In well No. 3p Kossor in the interval 2472–2482 m L.S. Khachieva encountered the following spore-pollen complex: Cyathidites minor Couper, C.junctus [K.-M.] Alim, Monosulcites sp., M.

Subopanulosus Couper, Disaccites, etc. , which makes it possible to date the age of the host sediments as Lower Jurassic.

The ratio of iron forms suggests that weakly reducing conditions prevailed during the period of accumulation and transformation of Lower Jurassic sediments. The reservoir properties of the rocks are characterized by the following indicators: total porosity - 9.2%, open -8.6%, density within 2.43 g/cm³, no permeability.

From the Lower Jurassic age, humidization of the climate and reduction of arid zones began; sedimentation took place in a desalinated shallow basin in a warm, humid climate.

The thickness of Lower Jurassic deposits decreases from northwest to southeast. If in well No. 1 Kindyksay the thickness of sediments is 172 m, then within the Kossor area it is 124–157 m, in the East Assakeaudan area it is 76–98 m.


Middle Jurassic deposits within the investment block are widespread and are represented by undifferentiated Aalenian-Bajocian and Bathonian stages.

Lithologically, the Middle Jurassic deposits are represented by a terrigenous sequence of interbedded gray sandy-silty-clayey rocks.

The Aalenian-Bajocian stage is represented by a frequent alternation of sandstones, siltstones and clays with an abundance of carbonized plant remains and thin layers of coal (2–4 cm). It is characterized by thin horizontal bedding and lens-shaped microbedding. The thickness and lithological composition of the rocks vary greatly, which is associated with the continental nature of the genesis of sediments.

The Bathonian stage in the lower part is represented by sandstones with thin interlayers of gravelstones, in the upper part - by frequent alternation of gray and dark gray sandstones, siltstones and clays. The rocks are rich in charred plant remains and pyrite.

The sandstone is light gray to gray, quartz-feldspar, fine to coarse-grained, micaceous, dense, polymictic, with mixed carbonate-mica-clayey cement, poorly sorted in the Aalenian-Bajocian and better sorted in the Bathonian sediments.

Picture.1. Structural map of the area of Batyrbay along the reflecting horizon TIV, confined to the surface of Middle Jurassic deposits.

The mudstones are dark gray to black, silty, micaceous, with inclusions of pyrite crystals. The age is palynologically substantiated by various researchers. In well No. 2p Shakhpakhty V.V. Kutuzova identified the pelecypod *Astarteminima* Philips, indicating the Bathonian age of the host rocks. The reservoir properties of the rocks are characterized by the following indicators: total porosity - 11.6%, open - 10.75%, density within 2.38 g/cm³, no permeability. Torg is 0.58%, chloroform bitumen "A" is 0.02%. Within the investment block, the thickness of Middle Jurassic deposits varies from 360 m (No. 1 Kossor) to 433 m (No. 3 East Assakeaudan).

The greatest thicknesses of Kimmeridgian Tithonian deposits were noted in well. 1P Samskaya (128 m), in well 1 Almambet and on the Nikolaevskaya area (up to 228 m) in the central part of the Assakeaudan trough outside the study area (Fig. 2.6.) In the Kimmeridgian-Tithonian time, such large troughs as Sudochiy, Alan depression, have practically lost their importance as the main zones with maximum power [2; p.103].

The greatest thickness of Kimmeridgian-Tithonian deposits (up to 219 m) was recorded in the central part of the Assakeaudan trough.

Upper Jurassic deposits, conformably overlying rocks of Middle Jurassic age, were uncovered by all deep wells and are represented in the Callovian-Oxfordian and Kimmeridgian-Tithonian volumes.

Callovian-Oxfordian deposits [J3cl-Oxf] are represented mainly by clays with interlayers of siltstones and sandstones. They are characterized by a gray, greenish-gray color; in the upper part there are layers of variegated and, in places, red-colored clays.

The clays are gray, greenish-gray, at the tops of the section – brownish-brown, silty, dense, finely exhumed, with rare charred remains of vegetation, with horizontal layering. At the top of the section, iron hydroxides are widely developed.

Siltstones are greenish-gray, clayey and sandy, dense, strong.

Sandstones are greenish-gray, fine- and fine-grained, very often silty, dense, strong, massive, quartz-feldspathic with inclusions of rare glauconite grains.

The clays are gray, greenish-gray, at the tops of the section – brownish-brown, silty, dense, finely exhumed, with rare charred remains of vegetation, with horizontal layering. At the top of the section, iron hydroxides are widely developed.

Siltstones are greenish-gray, clayey and sandy, dense, strong.

Sandstones are greenish-gray, fine- and fine-grained, very often silty, dense, strong, massive, quartz-feldspathic with inclusions of rare glauconite grains.

The Kimmeridgian-Tithonian deposits (J3 km-tit) overlie the Callovian-Oxfordian deposits with erosion. They are represented by gray, light gray, sandy, fine-crystalline, and massive limestones. The rocks are enriched with inclusions of micro- and macrofauna, *Myophorella* of. *Coralina* Orb., *Mactromyasp.* *indexogira*(*Amphedouta*)cf. *Bruntrunata* Turn., determined by S.Kh. Chepikova in the section of the Assakeaudan reference well among similar limestones.

Within the study area, the thickness of the Upper Jurassic deposits varies from 293 m (borehole No. 1 Kossor) to 331 m (No. 1, 2 V. Assakeaudan).

Conclusion. The Lower Jurassic sequence is composed of interbedded terrigenous rocks (sandstones, mudstones, siltstones, gravelites), while a clearer differentiation of sediments and the presence of pure differences are observed in comparison with the overlying Upper and Middle Jurassic deposits, which is reflected by the presence in the section of thick up to 1149 (Karaaudan) m and more layers of sandstones and clays.

REFERENCES

1. O'g'li R. Z. Y., Abdaaliyevna E. Z. 3D Technological System of Management of Geological Exploration Processes of Mining Enterprises. – 2022.
2. Mustapaevich D. K. et al. Underground mine mining systems and technological parameters of mine development //INTERNATIONAL JOURNAL OF SOCIAL SCIENCE & INTERDISCIPLINARY RESEARCH ISSN: 2277-3630 Impact factor: 7.429. – 2022. – T. 11. – №. 10. – C. 110-117.
3. Mustapaevich D. K. O'telbayev Azizbek Alisher o'g'li, O'razmatov Jonibek Ikromboy o'g'li, & Mnajatdinov Dastan Mnajatdin o'g'li.(2021). PROPERTIES OF COAL, PROCESSES IN COAL MINING COMPANIES, METHODS OF COAL MINING IN THE WORLD. JournalNX-A Multidisciplinary Peer Reviewed Journal, 7 (10), 231–236.
4. Umirzoqov A. Justification of rational parameters of transshipment points from automobile conveyor to railway transport //Scienceweb academic papers collection. – 2020.
5. Djaksimuratov K. Comprehensive monitoring of surface deformation in underground mining, prevention of mining damage. Modern technologies and their role in mining //Scienceweb academic papers collection. – 2021.
6. Alisher o'g O. A. et al. Conveyor belt structure and mode of operation in mines //Eurasian Journal of Engineering and Technology. – 2022. – T. 11. – C. 72-80.
7. Khayitov O. et al. Calculation and development of a model of the blasting area in mining enterprises //International Bulletin of Engineering and Technology. – 2023. – T. 3. – №. 5. – C. 5-12.
8. Ravshanov Z. 3D Technological System of Management of Geological Exploration Processes of Mining Enterprises //Scienceweb academic papers collection. – 2022.
9. Bekbawlievich S. B. et al. PROSPECTS FOR THE RATIONAL USE OF IRON ORE OF SULTAN UVAYS AT THE TEBINBULAK DEPOSIT //Galaxy International Interdisciplinary Research Journal. – 2021. – T. 9. – №. 12. – C. 609-613.
10. Ravshanov Z. Mining processes of drilling machines //Information about the technological alarm system of drilling machines. – 2022.
11. Ravshanov Z. et al. Evaluation of the strength of rocks in open mining processes in mining enterprises //Science and innovation. – 2023. – T. 2. – №. A4. – C. 96-100.
12. Ravshanov Z. et al. Methods of determining the safety and environmental impact of dust and explosion processes in mining enterprises //International Bulletin of Applied Science and Technology. – 2023. – T. 3. – №. 4. – C. 415-423.
13. Mustapaevich D. K. et al. Underground mine mining systems and technological parameters of mine development //INTERNATIONAL JOURNAL OF SOCIAL SCIENCE & INTERDISCIPLINARY RESEARCH ISSN: 2277-3630 Impact factor: 7.429. – 2022. – T. 11. – №. 10. – C. 110-117.
14. Axmet o'g'li M. A. et al. IN GEOLOGICAL AND GEOTECHNICAL PROCESSES IN THE MINE USE OF TECHNOLOGICAL SCANNING EQUIPMENT IN THE UNDERGROUND MINING METHOD //Intent Research Scientific Journal. – 2023. – T. 2. – №. 1. – C. 20-27.
15. Alisher o'g O. A. et al. MINING TECHNOLOGICAL EQUIPMENT THAT DETERMINES THE SLOPE ANGLES OF THE MINE BY MEANS OF LASER BEAMS. – 2023.
16. Ravshanov Z. Determination of mineral location coordinates in geotechnology and mining enterprises //Scienceweb academic papers collection. – 2023.

17. Djaksimuratov K. Comprehensive monitoring of surface deformation in underground mining, prevention of mining damage. Modern technologies and their role in mining //Scienceweb academic papers collection. – 2021.
18. Хайитов О. Г. и др. Особенности разработки пластового месторождения фосфоритов //Глобус. – 2020. – №. 5 (51). – С. 19-21.
19. Хайитов О., Умирзоков А., Равшанов З. Анализ текущего состояния и пути повышения эффективности разработки нефтегазовых месторождений юго-восточной части бухаро-хивинского региона //Матеріали конференції МЦНД. – 2020. – С. 8-11.
20. G'ofurovich K. O. et al. Justification of rational parameters of transshipment points from automobile conveyor to railway transport //World Economics and Finance Bulletin. – 2021. – Т. 1. – №. 1. – С. 20-25.
21. O'g'li R. Z. Y., Abdaaliyevna E. Z. 3D Technological System of Management of Geological Exploration Processes of Mining Enterprises. – 2022.
22. Ravshanov, Z. (2022). MINING PROCESSES OF DRILLING MACHINES. INFORMATION ABOUT THE TECHNOLOGICAL ALARM SYSTEM OF DRILLING MACHINES.
23. Ravshanov, Z. (2023). Coal Mine Design and Explosion Prevention Studies.
24. Ravshanov Z. RESEARCH ON SELECTION AND PERFORMANCE IMPROVEMENT OF BLAST HOLE DRILLING EQUIPMENT //International scientific journal «MODERN SCIENCE AND RESEARCH». – 2023.
25. Ravshanov, Z. (2023). INSTRUCTIONS FOR CREATING A STEP-BY-STEP PIT DESIGN IN MINING ENTERPRISES.
26. Yahyo o'g'li R. Z. et al. INSTRUCTIONS FOR CREATING A STEP-BY-STEP PIT DESIGN IN MINING ENTERPRISES //Open Access Repository. – 2023. – Т. 10. – №. 6. – С. 1-6.
27. Ravshanov Z. Y., Ergasheva Z. A., Sailau A. M. KARYERLARNING PASTKI GORIZONTLARIDAGI KON MASSASINI AVTOMOBIL TRANSPORTLARIDA TASHISH USULLARINI TANLASH //Инновационные исследования в современном мире: теория и практика. – 2023. – Т. 2. – №. 20. – С. 4-6.
28. Ravshanov Z., Ergasheva Z., Sailau A. MEASURES OF RECULTIVATION OF MINING AREA IN QUARRIES //International Conference on Management, Economics & Social Science. – 2023. – Т. 1. – №. 3. – С. 54-56.
29. Abdaaliyevna E. Z. et al. Coal Mine Design and Explosion Prevention Studies //Nexus: Journal of Advances Studies of Engineering Science. – 2023. – Т. 2. – №. 5. – С. 255-259.
30. Ravshanov Z. Расчет устойчивости нижнего участка борта карьера «Мурунтау» с учетом программной комплекс «Ustoi» //Scienceweb academic papers collection. – 2021.
31. Ravshanov Z. Technological Stages of determining the Distance to the Location of Rocks in the Development of a 3D Model of Mining Enterprises //Scienceweb academic papers collection. – 2022.
32. Ravshanov Z. Анализ текущего состояния и пути повышения эффективности разработки нефтегазовых месторождений юго-восточной части бухаро-хивинского региона //Scienceweb academic papers collection. – 2020.